Skip to main content
Log in

Abstract

Spatial patterns and trends over time in the emissions of sulphur dioxide, oxides of nitrogen and ammonia are described. The relative importance of wet, dry and occult pathways to acid deposition is considered and measured and modelled spatial patterns of wet and dry deposition presented. The variation in wet deposition over a range of timescales and the relationship between emissions and deposition are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcamo J, Amann M, Hettelingh J-P, Holmberg M, Hordijk L, Kamari J, Kauppi P, Kornai G, Makela A (1987) Acidification in Europe: A simulation model for evaluating control strategies. Ambio 16:232–245

    Google Scholar 

  • Amble E (1981) Estimation of the spatial distribution of the population and the SO2 emissions in Europe and Turkey within the EMEP grid. EMEP 8/81, Lillestrom, Norwegian Institute for Air Research

  • Ames DL, Roberts LE, Webb AH (1987) An automatic rain gauge for continuous real time determination of rainwater chemistry. Atmos Environ 21:1947–1955

    Google Scholar 

  • ApSimon HM, Kruse M, Bell JNB (1987) Ammonia emissions and their role in acid deposition. Atmos Environ 21:1939–1946

    Google Scholar 

  • Barrie LA, Hales JM (1984) The spatial distributions of precipitation acidity and major ion wet deposition in North America during 1980. Tellus 36B:333–355

    Google Scholar 

  • Bonis K, Meszaros, E, Putsay M (1980) On the atmospheric budget of nitrogen compounds over Europe. Idojaras 57–68

  • Bowersox VC, Stensland GJ (1981) Seasonal patterns of sulfate and nitrate in precipitation in the United States. Paper 81–6.1 74th Annual Meeting, Air Pollution Control Association, Philadelphia, PA

    Google Scholar 

  • Bradley RS (1986) Uncertainties in trends in acid deposition: The role of climatic fluctuations. In: Acid deposition longterm trends. National Academy Press, Washington, DC, pp 93–108

    Google Scholar 

  • Brimblecombe P, Stedman DH (1982) Historical evidence for a dramatic increase in the nitrate component of acid rain. Nature 298:460–462

    Google Scholar 

  • Buijsman E, Maas HFM, Asman WAH (1987) Anthropogenic NH3 emissions in Europe. Atrnos Environ 21:1009–1022

    Google Scholar 

  • Chan WH, Lusis MA, Stevens RDS, Vet RJ (1984) A precipitation sampler intercomparison. Water Air Soil Pollut 23:1–13

    Google Scholar 

  • Charlson RJ, Rodhe H (1982) Factors controlling the acidity of natural rainwater. Nature 295:683–685

    Google Scholar 

  • Clark PA (1987) The effect of non-linear wet scavenging on the long-term average deposition of sulphur oxides. TPRD/L/ 3149/R87, CEGB, Leatherhead

    Google Scholar 

  • Coscio MR, Pratt GC, Krupa SV (1982) An automatic, refrigerated, sequential precipitation sampler. Atmos Environ 16:1939–1944

    Google Scholar 

  • Cottrill SM, Heyes CJ, Irwin JG (1987) Spatial distribution of acidity and other ions in United Kingdom precipitation—1986. In: Proc. EMEP workshop on data analysis and presentation, Koln. EMEP 7/87 Norwegian Institute for Air Research, Lillestrom pp 105–116

    Google Scholar 

  • Dana MT, Easter RC (1987) Statistical summary and analyses of event precipitation chemistry from the MAP3S network, 1976–1983. Atmos Environ 21:113–128

    Google Scholar 

  • Dasch JM (1987) On the difference between SO4 2− and NO3 in winter-time precipitation. Atmos Environ 21:137–141

    Google Scholar 

  • Davies TD, Kelly PM, Brimblecombe P, Farmer G, Barthelmie RJ (1986) Acidity of Scottish rainfall influenced by climatic change. Nature 322:359–361

    Google Scholar 

  • de Pena RG, Carlson TN, Takacs JF, Holian JO (1984) Analysis of precipitation collected on a sequential basis. Atmos Environ 8:2665–2670

    Google Scholar 

  • Dollard GJ, Unsworth MH, Harvey MJ (1983) Pollutant transfer in upland regions by occult precipitation. Nature 302:241–243

    Google Scholar 

  • Eggleston HS, McInnes G (1987) Methods for the compilation of UK air pollutant emission inventories. LR 634 (AP), Warren Spring Laboratory, Stevenage, UK

    Google Scholar 

  • Ehhalt DH, Drummond JW (1982) The tropospheric cycle of NOx. In: Georgii HW, Jaeschke W (eds) Chemistry of the unpolluted and polluted troposphere. Reidel, Hingham

    Google Scholar 

  • EMEP (1984) Summary report of the Chemical Co-ordinating Centre for the second phase of EMEP. EMEP 2/84, Norwegian Institute for Air Research, Lillestrom

    Google Scholar 

  • Fowler D (1984) Transfer to terrestrial surfaces. Phil Trans R Soc Lond B305:281–297

    Google Scholar 

  • Fowler D, Cape JN, Leith ID, Paterson IS, Kinnaird JW, Nicholson IA (1982) Rainfall acidity in Northern Britain. Nature 297:383–386

    Google Scholar 

  • Friend JP (1973) The global sulphur cycle. In: Rasool SI (ed) Chemistry of the lower atmosphere. Plenum Press, New York, pp 177–201

    Google Scholar 

  • Galloway JN, Dianwu Z, Giling X, Likens GE (1987) Acid rain: China, United States and a remote area. Science 236:1559–1562

    Google Scholar 

  • Galloway JN, Likens GE (1981) Acid precipitation: The importance of nitric acid. Atmos Environ 15:1081–1085

    Google Scholar 

  • Galloway JN, Likens GE, Keene WC, Miller JM (1982) The composition of precipitation in remote areas of the world. J Geophys Res 87:8771–8786

    Google Scholar 

  • Galloway JN, Likens GE, Hawley ME (1984) Acid precipitation: Natural versus anthropogenic components. Science 226:829–831

    Google Scholar 

  • Georgii H-W (1982) Global distribution of the acidity in precipitation. In: Georgii H-W, Pankrath J (eds) Deposition of atmospheric pollutants. Reidel, Dordrecht, pp 55–66

    Google Scholar 

  • Granat L (1978) Sulphate in precipitation as observed in the European Atmospheric Chemistry Network. Atmos Environ 12:413–424

    Google Scholar 

  • Granat L, Rodhe H, Hallberg RD (1976) The global sulphur cycle. In: Svensson BH, Soderlund R (eds) Nitrogen, phosphorous and sulphur-global cycles. Ecol Bull 22:89–134

  • Grennfelt P, Eliassen A, Hov O, Berkowicz R, Nordlund G (1987) Atmospheric chemistry, transport and deposition of nitrogen oxides. Nordisk Ministerrad, Copenhagen

    Google Scholar 

  • Gschwandtner G, Gschwandtner KC, Elridge K (1985) Historic emissions of sulfur and nitrogen oxides in the United States from 1900–1980. Vol 1. EPA 600/7-85-009a, US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Hicks BB (1986) Measuring dry deposition: A re-assessment of the state of the art. Water Air Soil Pollut 30:75–90

    Google Scholar 

  • Husar RB (1986) Emissions of sulfur dioxide and nitrogen oxides and trends over Eastern North America. In: Acid deposition long-term trends. National Academy Press, Washington, DC, pp 48–92

    Google Scholar 

  • Irwin JG (1985) Acid deposition in the United Kingdom. Environ Health 93:212–220

    Google Scholar 

  • Irwin JG, Williams ML (1988) Acid rain: Chemistry and transport. Environ Pollut 50:29–59

    Google Scholar 

  • Kallend AS, Marsh ARW, Pickles JH, Proctor MV (1983) Acidity of rain in Europe. Atmos Environ 17:127–137

    Google Scholar 

  • Keiding K, Heidman NZ (1986) Observations on acidity and ions in East Greenland precipitation. Tellus 38B:345–352

    Google Scholar 

  • Kellogg WW, Cadle RD, Allen ER, Lazrus AL, Martell EA (1972) The sulfur cycle. Science 175:587–596

    Google Scholar 

  • Knutson EO, Sood SK, Stockham JD (1976) Aerosol collection by snow and ice crystals. Atmos Environ 10:395–402

    Google Scholar 

  • Lawes JB, Gilbert JH, Pugh E (1861) On the source of nitrogen for vegetation. Phil Trans R Soc:(2) 431–577

  • Logan JA (1983) Nitrogen oxides in the troposphere: Global and regional budgets. J Geophys Res 88:10785–10807

    Google Scholar 

  • Moller D (1984a) On the global natural sulphur emission. Atmos Environ 18:29–39

    Google Scholar 

  • — (1984b) Estimation of the global man-made sulphur emission. Atmos Environ 18:19–27

    Google Scholar 

  • NAPAP (1985) The national acid precipitation assessment program annual report 1985. Office of the Director of Research, Washington, DC

    Google Scholar 

  • Nodop K (1987) Nitrate and sulphate wet deposition in Europe. In: Angeletti G, Restelli G (eds) Physico-chemical behaviour of atmospheric pollutants. Reidel, Dordrecht, pp 520–528

    Google Scholar 

  • OECD (1987) Control of major air pollutants. Environment monograph No 10, Paris, OECD

  • Perrin DA (1986) Modelling the transport and removal of sulphur dioxide emissions in the United Kingdom. LR 560 (AP), Warren Spring Laboratory, Stevenage, UK

    Google Scholar 

  • Raynor GS, Hayes JV (1982) Effects of varying air trajectories on spatial and temporal precipitation chemistry patterns. Water Air Soil Pollut 18:173–189

    Google Scholar 

  • — (1983) Differential rain and snow scavenging efficiency implied by ionic differences in winter precipitation. In: Pruppacher HR, Semomin RG, Slinn WGN (eds) Precipitation scavenging, dry deposition and resuspension. New York, Elsevier, pp 249–264

    Google Scholar 

  • RGAR (1983) Acid deposition in the United Kingdom. The United Kingdom Review Group on Acid Rain, Warren Spring Laboratory, Stevenage, UK

    Google Scholar 

  • — (1987) Acid deposition in the United Kingdom 1981–1985. The United Kingdom Review Group on Acid Rain, Warren Spring Laboratory, Stevenage, UK

    Google Scholar 

  • Rodhe H, Rood MJ (1986) Temporal evolution of nitrogen compounds in Swedish precipitation since 1955. Nature 321:762–764

    Google Scholar 

  • Saltbones J, Dovland H (1987) Emissions of sulphur dioxide in Europe in 1980 and 1983. EMEP 1/86 (rev), Norwegian Institute for Air Research, Lillestrom

    Google Scholar 

  • Sanhueza E, Graterol N, Rondon A (1987) Rainfall pH in the Venezuelan savannah. Tellus 39B:329–332

    Google Scholar 

  • Schaug J, Hannsen JE, Nodop K, Ottar B, Pacyna JM (1987) Summary report from the chemical co-ordinating centre for the third phase of EMEP. EMEP 3/87, Norwegian Institute for Air Research, Lillestrom

    Google Scholar 

  • Semb A, Amble E (1981) Emissions of nitrogen oxides from fossil fuel combustion in Europe. EMEP 13/81, Norwegian Institute for Air Research, Lillestrom

    Google Scholar 

  • Slanina J, van Raaphorst JG, Zyp WL, Vermeulen AJ, Roet CA (1979) An evaluation of the chemical composition of precipitation sampled in 21 identical collectors on a limited area. Intern J Environ Anal Chem 6:67–81

    Google Scholar 

  • Smith FB (1987) The response of long-term depositions to nonlinear processes inherent in the wet removal of airborne acidifying pollutants. In: Sandroni S (ed) Regional and longrange transport of air pollutants. Elsevier, Amsterdam

    Google Scholar 

  • Smith RA (1872) Air and Rain—the beginnings of a chemical climatology. Longmans Green and Co, London

    Google Scholar 

  • Smith FB, Hunt RD (1978) Meteorological aspects of the transport of pollution over long distances. Atmos Environ 12:461–477

    Google Scholar 

  • Stedman DH, Shelter RE (1983) The global budget of atmospheric nitrogen species. In: Schwartz SE (ed) Trace atmospheric constituents. Advan Environ Sci Technol 12, John Wiley, New York

    Google Scholar 

  • Stensland GJ, Whelpdale DM, Oehlert G (1986) Precipitation chemistry. In: Acid deposition long-term trends. National Academy Press, Washington, DC, pp 128–199

    Google Scholar 

  • Summers PW (1987) Empirical source-receptor relationships in Eastern Canada determined from monitoring data and airmass trajectory climatologies. In: Proc EMEP workshop on data analysis and presentation, Koln. Norwegian Institute for Air Research, Lillestrom

    Google Scholar 

  • Summers PW, Bowersox VC, Stensland GJ (1986) The geographical distribution and temporal variations of acidic deposition in Eastern North America. Water Soil Air Pollut 31:523–535

    Google Scholar 

  • Szepesi DJ, Fekete KE (1987) Background levels of air and precipitation quality for Europe. Atmos Environ 21:1623–1630

    Google Scholar 

  • Toothman DA (1986) Assessment of the final 1980 NAPAP emissions inventory. In: Proc of the second annual acid deposition symposium. US EPA Report EPA-600/9-86-010

  • Topol LE (1986) Differences in ionic compositions and behaviour in winter rain and snow. Atmos Environ 20:347–355

    Google Scholar 

  • Tranter M, Brimblecombe P, Davies TD, Vincent CE, Abrahams PW, Blackwood I (1986) The composition of snowfall, snowpack and meltwater in the Scottish Highlands-evidence for preferential elution. Atmos Environ 20:517–525

    Google Scholar 

  • Van Aalst RM, Diederen HSMA (1985) Removal and transformation processes in the atmosphere with respect to SO2 and NOx. In: Interregional air pollution modelling. NATO/ CCMS, Plenum Press, New York

    Google Scholar 

  • Varhelyi G (1985) Continental and global sulfur budgets—1 anthropogenic SO2 emissions. Atmos Environ 19:1029–1040

    Google Scholar 

  • Williams ML (1987) The impact of motor vehicles on air pollution emissions and air quality in the UK-an overview. Sci Tot Environ 59:47–61

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irwin, J.G. Acid rain: Emissions and deposition. Arch. Environ. Contam. Toxicol. 18, 95–107 (1989). https://doi.org/10.1007/BF01056194

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01056194

Keywords

Navigation