Skip to main content
Log in

Practice of geostatistics in the estimation of ion deposition from acid precipitation in the presence of sparse data networks

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The estimation of the spatial variability of ion deposition from acid precipitation is commonly faced with the problem of sparse data networks sampled over a short period of time. In such cases, geostatistical techniques are pertinent as long as they are properly applied. According to some practical examples, the use of ordinary kriging 1 given an experimental semi-variogram function based on scattered data values can be misleading in terms of predicted estimation variances; however, the choice of additional sampling stations based on such a semi-variogram remains valid. It is also preferable to work with regularly spaced data values that allow the identification of preferential directional variabilities even from a small number of data points. In order to predict the performance of kriging, the use of semi-variogram cross-validation techniques in the presence of small data sets can be misleading and is not recommended. Finally, the integration of additional information from denser precipitation networks through the cokriging technique is questionable when based on a very small number of concomitant deposition and precipitation data values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed S. De Marsily G (1988) Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity. To be published in Math Geol

  • Alabert F (1987) The practice of fast conditional simulations through the LU decomposition of the covariance matrix. Math Geol 19:369–386

    Google Scholar 

  • Bilonick RA (1985) The space-time distribution of sulfate deposition in the Northeastern United States. Atmos Environ 19:1829–1845

    Google Scholar 

  • Bilonick RA, Nichols DG (1983) Temporal variations in acid precipitation over New York State-what the 1965–1979 USGS data reveal. Atmos Environ 17:1063–1072

    Google Scholar 

  • Bilonick RA (1983) Risk qualified maps of hydrogen ion concentration for the New York State area for 1966–1978. Atmos Environ 17:2513–2524

    Google Scholar 

  • Buxton BE (1982) Coal reserve assessment-a geostatistical case study. Master thesis, Applied Sciences Dept, Stanford University, Palo Alto, CA, 85 pp

    Google Scholar 

  • Clark I (1986) The art of cross validation in geostatistical applications. In: Proceedings 19th APCOM, pp. 211–220

  • Cottrill SM (1987) Spatial distribution of wet and dry sulphur deposition in the United Kingdom. In: CEC Symposium Effects of air pollution on terrestrial and aquatic ecosystems, Grenoble, May 1987

  • David M (1977) Geostatistical ore reserve estimation. Elsevier, New York, 364 pp

    Google Scholar 

  • Finkelstein PL (1983) The spatial analysis of acid precipitation data. J Climate Appl Meteor 23:52–62

    Google Scholar 

  • Grimard Y (1985) Réseau d'échantillonnage des précipitations du Québec—Sommaire des données de la qualité des eaux de précipitations 1984. Ministère de l'Environnement du Québec, 99 pp

  • - (1984) Réseau d'échantillonnage des précipitations du Québec—Sommaire des données de la qualité des eaux de précipitations 1981, 1982, 1983. Ministère de l'Environnement du Québec, 163 pp

  • Guertin KV, Villeneuve JP, Jacques G, Deschênes S (1988) The choice of working variables in the geostatistical estimation of the spatial variability of ion concentration from acid precipitation. Atmos Environ (in press)

  • Journel AG, Huijbregts ChJ (1978) Mining Geostatistics. Academic Press, New York, 600 pp

    Google Scholar 

  • McBratney AB, Webster R (1983) How many observations are needed for regional estimation of soil properties? Soil Sci 135(3): 177–183

    Google Scholar 

  • Russo D (1984) Design of an optimal sampling network for estimating the variogram. Soil Sci Soc Am J 48:708–716

    Google Scholar 

  • Russo D, Bresler E (1982) Soil hydraulic properties as stochastic processes: II. Errors of estimates in a heterogeneous field. Soil Sci Soc Am J 46:20–26

    Google Scholar 

  • Seilkop SK, Finkelstein PL (1987) Acid precipitation patterns and trends in Eastern North America, 1980–84. J Climate Appl Meteor 26:980–994

    Google Scholar 

  • Solow AR, Gorelick SM (1987) Estimating monthly streamflow values by cokriging. Math Geol 18:785–809

    Google Scholar 

  • Villeneuve JP, Guertin KV, Jacques G (1988) A geostatistical analysis of the spatial variability of Québec acid precipitation. Submitted to J Climate Appl Meteor

  • Warrick AW, Myers DE (1987) Optimization of sampling locations for variogram calculations. Water Resour Res 23:496–500

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guertin, K., Villeneuve, J.P. & Deschênes, S. Practice of geostatistics in the estimation of ion deposition from acid precipitation in the presence of sparse data networks. Arch. Environ. Contam. Toxicol. 18, 83–93 (1989). https://doi.org/10.1007/BF01056193

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01056193

Keywords

Navigation