Advertisement

Ukrainian Mathematical Journal

, Volume 46, Issue 8, pp 1101–1109 | Cite as

Limiting distributions of the solutions of the many-dimensional Bürgers equation with random initial data. II

  • N. N. Leonenko
  • E. Orsingher
  • K. V. Rybasov
Article

Abstract

We find non-Gaussian limiting distributions of the solutions of the many-dimensional Burgers equation with the initial condition given by a homogeneous isotropic Gaussian random χ2-type field with strong dependence.

Keywords

Initial Data Strong Dependence Burger Equation Random Initial Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Burgers, “A mathematical model illustrating the theory of turbulence,”Adv. Appl. Mech., 171–189 (1948).Google Scholar
  2. 2.
    S. N. Gurbatov, A. N. Malakhov, and A. I. Saichev,Nonlinear Random Waves in Dispersion-Free Media [in Russian], Nauka, Moscow (1990).Google Scholar
  3. 3.
    G. B. Whitham,Linear and Nonlinear Waves, Wiley, New York (1974).Google Scholar
  4. 4.
    M. Rosenblatt, “Remark on the Bürgers equation,”J. Math. Phys.,9, 1129–1136 (1968).Google Scholar
  5. 5.
    M. Rosenblatt, “Fractional integrals of stationary processes and the central limit theorem,”J. Appl. Probab.,13, 723–732 (1976).Google Scholar
  6. 6.
    M. Rosenblatt, “Scale normalization and random solutions of the Bürgers equation,”J. Appl. Probab.,24, 328–338 (1987).Google Scholar
  7. 7.
    A. B. Bulinskii and S. A. Molchanov, “On the property of a solution of the Bürgers equation with random initial data of being asymptotically Gaussian,”Teor. Ver. Primen.,36, No. 2, 217–235 (1991).Google Scholar
  8. 8.
    L. Giraitis, S. A. Molchanov, and D. Surgailis, “Long memory shot noises and limit theorems with applications to Burger's equations. New direction in time series analysis. Pt. II,”IMA Volumes, Math. Appl.,46, 153–171 (1963).Google Scholar
  9. 9.
    Ya. G. Sinai, “Two results concerning the asymptotic behavior of solutions of the Bürgers equations with force,”J. Statist. Phys.,64, 1–12 (1991).Google Scholar
  10. 10.
    N. N. Leonenko and E. Orsingher, “Limit theorems for solutions of Bürgers equation with Gaussian and non-Gaussian initial conditions,”Teor. Ver. Primen.,40, No. 2, 387–403 (1991).Google Scholar
  11. 11.
    S. M. Berman, “High level sojourns for strongly dependent Gaussian processes,”Z. Wahrscheinlichkeitstheor. Verw. Geb.,50, 223–236 (1979).Google Scholar
  12. 12.
    R. L. Dobrushin and P. Major, “Non-central limit theorems for nonlinear functionals of Gaussian fields,”Z. Wahrscheinlichkeitstheor. Verw. Geb.,50, 1–28 (1979).Google Scholar
  13. 13.
    M. S. Taqqu, “Convergence of integrated processes of arbitrary Hermite rang,”Z. Wahrscheinlichkeitstheor. Verw. Geb.,50, No. 1, 55–83 (1979).Google Scholar
  14. 14.
    A. V. Ivanov and N. N. Leonenko,Statistical Analysis of Random Fields, Kluwer AP, Dordrecht (1989).Google Scholar
  15. 15.
    N. N. Leonenko, E. Orsingher, and K. V. Rybasov, “Limiting distributions of the solutions of the many-dimensional Bürgers equation with random initial data. I,”Ukr. Mat. Zh.,46, No. 7, 870–877 (1994).Google Scholar
  16. 16.
    N. N. Leonenko and A. Ya. Olenko, “Tauberian and Abelian theorems for correlation functions of homogeneous isotropic random fields,”Ukr. Mat. Zh.,43, No. 12, 1652–1664 (1991).Google Scholar
  17. 17.
    A. Ya. Olenko,Some Problems of Correlation and Spectral Theory of Random Fields [in Russian], Author's Abstract of the Candidate Degree Thesis (Physics and Mathematics), Kiev (1991).Google Scholar
  18. 18.
    N. N. Leonenko and A. Ya. Olenko, “Tauberian theorems for correlation functions and limit theorems for spherical averages of random fields,”Random Oper. Stoch. Eqs.,1, No. 1, 58–68 (1992).Google Scholar
  19. 19.
    P. Major, “Multiple Wiener-Itô integrals,”Lect. Notes Math.,849, (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • N. N. Leonenko
    • 1
  • E. Orsingher
    • 2
  • K. V. Rybasov
    • 1
  1. 1.Kiev UniversityKiev
  2. 2.Rome University “La Sapienza”RomeItaly

Personalised recommendations