Skip to main content
Log in

Overcoming artificial spatial correlations in simulations of superstructure domain growth with parallel Monte Carlo algorithms

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the applicability of parallelized/vectorized Monte Carlo (MC) algorithms to the simulation of domain growth in two-dimensional lattice gas models undergoing an ordering process after a rapid quench below an order-disorder transition temperature. As examples we consider models with 2×1 andc(2×2) equilibrium superstructures on the square and rectangular lattices, respectively. We also study the case of phase separation (“1×1” islands) on the square lattice. A generalized parallel checkerboard algorithm for Kawasaki dynamics is shown to give rise to artificial spatial correlations in all three models. However, only ifsuperstructure domains evolve do these correlations modify the kinetics by influencing the nucleation process and result in a reduced growth exponent compared to the value from the conventional heat bath algorithm with random single-site updates. In order to overcome these artificial modifications, two MC algorithms with a reduced degree of parallelism (“hybrid” and “mask” algorithms, respectively) are presented and applied. As the results indicate, these algorithms are suitable for the simulation of superstructure domain growth on parallel/vector computers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Heinz, Experiments on kinetic effects at phase transitions, inKinetics of Interface Reactions, M. Grunze and H. J. Kreuzer, eds. (Springer, Berlin, 1987), p. 202, and references therein.

    Google Scholar 

  2. K. Heinz, G. Schmidt, L. Hammer, and K. Müller,Phys. Rev. B 32:6214 (1985).

    Google Scholar 

  3. K. Heinz, A. Barthel, L. Hammer, and K. Müller,Surf. Sci. 191:174 (1987).

    Google Scholar 

  4. M. C. Tringides, P. K. Wu, and M. G. Lagally,Phys. Rev. Lett. 59:315 (1987).

    Google Scholar 

  5. P. K. Wu, M. C. Tringides, and M. G. Lagally,Phys. Rev. B 39:7595 (1989).

    Google Scholar 

  6. M. C. Tringides,Phys. Rev. Lett. 65:1372 (1990).

    Google Scholar 

  7. J. K. Zuo, G. C. Wang, and T. M. Lu,Phys. Rev. Lett. 60:1053 (1988).

    Google Scholar 

  8. J. K. Zuo, G. C. Wang, and T. M. Lu,Phys. Rev. B 39:9432 (1989).

    Google Scholar 

  9. J. K. Zuo, G. C. Wang, and T. M. Lu,Phys. Rev. B 40:524 (1989).

    Google Scholar 

  10. J. K. Zuo and G. C. Wang,Phys. Rev. B 40:7078 (1990).

    Google Scholar 

  11. E. G. McRae and R. A. Malic,Phys. Rev. Lett. 65:737 (1990).

    Google Scholar 

  12. B. Garni, D. E. Savage, and M. G. Lagally,Surf. Sci. 235:L324 (1990).

    Google Scholar 

  13. H. Busch and M. Henzler,Phys. Rev. B 41:4891 (1990).

    Google Scholar 

  14. I. M. Lifshitz and V. V. Slyozov,J. Chem. Phys. Solids 15:35 (1961).

    Google Scholar 

  15. I. M. Lifshitz,Sov. Phys. JETP 5:939 (1962).

    Google Scholar 

  16. S. M. Allen and I. W. Cahn,Acta Metall. 27:1085 (1979).

    Google Scholar 

  17. G. F. Mazenko, O. T. Valls, and M. Zannetti,Phys. Rev. B 38:520 (1988).

    Google Scholar 

  18. Z. W. Lai, G. F. Mazenko, and O. T. Valls,Phys. Rev. B 37:9481 (1988).

    Google Scholar 

  19. G. F. Mazenko,Phys. Rev. B 42:4487 (1990).

    Google Scholar 

  20. T. Ohta, D. Jasnow, and K. Kawasaki,Phys. Rev. Lett. 49:1223 (1982).

    Google Scholar 

  21. A. Milchev, K. Binder, and D. W. Heermann,Z. Phys. B 63:521 (1986).

    Google Scholar 

  22. D. A. Huse,Phys. Rev. B 34:7845 (1986).

    Google Scholar 

  23. C. Yeung,Phys. Rev. B 39:9652 (1989).

    Google Scholar 

  24. M. K. Phani, J. L. Lebowitz, M. H. Kalos, and O. Penrose,Phys. Rev. Lett. 45:366 (1980).

    Google Scholar 

  25. P. S. Sahni, G. Dee, J. D. Gunton, M. Phani, J. L. Lebowitz, and M. Kalos,Phys. Rev. B 24:410 (1981).

    Google Scholar 

  26. P. S. Sahni and J. D. Gunton,Phys. Rev. Lett. 47:1754 (1981).

    Google Scholar 

  27. P. S. Sahni, D. J. Srolovitz, G. S. Grest, P. Anderson, and S. A. Safran,Phys. Rev. B 28:2705 (1983).

    Google Scholar 

  28. K. Kaski, M. C. Yalabik, J. D. Gunton, and P. S. Sahni,Phys. Rev. B 28:5263 (1983).

    Google Scholar 

  29. A. Sadiq and K. Binder,J. Stat. Phys. 35:517 (1984).

    Google Scholar 

  30. J. Viñals and J. D. Gunton,Surf. Sci. 157:473 (1985).

    Google Scholar 

  31. E. T. Gawlinski, M. Grant, J. D. Gunton, and K. Kaski,Phys. Rev. B 31:281 (1985).

    Google Scholar 

  32. E. T. Gawlinski, M. Grant, J. D. Gunton, and K. Kashi,Phys. Rev. B 32:1575 (1985).

    Google Scholar 

  33. O. G. Mouritsen,Phys. Rev. Lett. 56:850 (1986).

    Google Scholar 

  34. T. Ala-Nissila and J. D. Gunton,Phys. Rev. B 33:7583 (1986).

    Google Scholar 

  35. T. Ala-Nissila and J. D. Gunton,Phys. Rev. B 38:11418 (1988).

    Google Scholar 

  36. G. S. Grest and M. P. Anderson,Phys. Rev. B 38:4752 (1988).

    Google Scholar 

  37. J. G. Amar, F. E. Sullivan, and R. D. Mountain,Phys. Rev. B 37:196 (1988).

    Google Scholar 

  38. H. C. Kang and W. H. Weinberg,Phys. Rev. B 41:2234 (1990).

    Google Scholar 

  39. P. J. Shah and O. G. Mouritsen,Phys. Rev. B 41:7003 (1990).

    Google Scholar 

  40. O. G. Mouritsen, P. J. Shah, and J. V. Andersen,Phys. Rev. B 42:4506 (1990).

    Google Scholar 

  41. W. Schleier, G. Besold, and K. Heinz,Vacuum 41:412 (1990).

    Google Scholar 

  42. M. G. Lagally, ed.,Kinetics of Ordering and Growth at Surfaces (Plenum Press, New York, 1990).

    Google Scholar 

  43. L. Jacobs and C. Rebbi,J. Comp. Phys. 41:203 (1981).

    Google Scholar 

  44. R. Zorn, H. J. Herrmann, and C. Rebbi,Comp. Phys. Commun. 23:337 (1981).

    Google Scholar 

  45. W. Oed,Appl. Informatics 7:358 (1982).

    Google Scholar 

  46. S. Wansleben, J. G. Zabolitsky, and C. Kalle,J. Stat. Phys. 37:271 (1984).

    Google Scholar 

  47. G. Bhanot, D. Duke, and R. Salvador,J. Stat. Phys. 44:985 (1986).

    Google Scholar 

  48. F. Sullivan and R. D. Mountain, A fast MPP algorithm for Ising spin exchange simulations, inFrontiers of Massively Parallel Scientific Computation, J. R. Fischer, ed. (NASA Conference Publication No. 2478, 1987), p. 53.

  49. M. Q. Zhang,J. Stat. Phys. 56:939 (1989).

    Google Scholar 

  50. D. W. Heermann and A. N. Burkitt, Parallelization of computational physics algorithms, inComputer Simulation Studies in Condensed Matter Physics II, D. P. Landau, K. K. Mon, and H.-B. Schüttler, eds. (Springer, Berlin, 1990), p. 16.

    Google Scholar 

  51. G. S. Pawley and G. W. Thomas,J. Comp. Phys. 47:165 (1982).

    Google Scholar 

  52. S. F. Reddaway, D. M. Scott, and K. A. Smith,Comp. Phys. Commun. 37:351 (1985).

    Google Scholar 

  53. R. H. Swendsen and J.-S. Wang,Phys. Rev. Lett. 58:86 (1987).

    Google Scholar 

  54. U. Wolff,Phys. Rev. Lett. 62:361 (1989).

    Google Scholar 

  55. H. A. Ceccatto,Phys. Rev. B 33:4734 (1986).

    Google Scholar 

  56. N. Schmitz and F. Lehmann,Monte Carlo Methods I—Generating and Testing of Pseudo Random Numbers (lAnton Hain, Meisenheim/Glan, 1976), p. 47.

    Google Scholar 

  57. K. A. Smith, S. F. Reddaway, and D. M. Scott,Comp. Phys. Commun. 37:239 (1985).

    Google Scholar 

  58. R. C. Tausworth,Math. Comput. 19:201 (1965).

    Google Scholar 

  59. S. Kirkpatrick and E. P. Stoll,J. Comp. Phys. 40:517 (1981).

    Google Scholar 

  60. W. Schleier, G. Besold, and K. Heinz, Parallel Monte Carlo algorithms for domain growth kinetics, inProceedings of the CP 90 Europhysics Conference on Computational Physics, A. Tenner, ed. (World Scientific, Singapore, 1991), p. 468.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schleier, W., Besold, G. & Heinz, K. Overcoming artificial spatial correlations in simulations of superstructure domain growth with parallel Monte Carlo algorithms. J Stat Phys 66, 1101–1122 (1992). https://doi.org/10.1007/BF01055719

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01055719

Key words

Navigation