Eggshell thickness and reproduction in American kestrels exposed to chronic dietary lead

  • Oliver H. Pattee
Article

Abstract

American kestrels (Falco sparverius) were randomly paired and fed 0, 10, or 50 ppm metallic lead in their diet from November 1979–May 1980. Lead levels were elevated in bones and livers of birds receiving the treated diets, particularly the 50 ppm treatment group. Differential deposition of lead was noted between males and females, with the highest levels in the females. No adverse effects were evident with respect to survival, egg laying, or initiation of incubation in any treatment group nor was fertility or eggshell thickness affected. Little or no lead was transferred to the egg contents and although lead was present in the shell, the levels were too variable for this to be considered a useful measure of exposure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Association of Official Analytical Chemists: Official methods of analysis of the Association of Official Analytical Chemists. 13 ed. Washington, DC (1980).Google Scholar
  2. Bellrose, F. C.: Lead poisoning as a mortality factor in waterfowl populations. Illinois Nat. Hist. Serv. Bull.27, 235 (1959).Google Scholar
  3. Benson, W. W., B. Pharoah, and P. Miller: Lead poisoning in a bird of prey. Bull. Environ. Contam. Toxicol.11, 105 (1974).Google Scholar
  4. Corrin, M. L., and D. F. S. Natusch: Physical and chemical characteristics of environmental lead. In W. R. Boggess and B. G. Wixson (eds.): Lead in the environment. p. 7. Washington, DC: National Science Foundation (1977).Google Scholar
  5. Dahlquist, R. L., and J. W. Knoll: Inductively coupled plasmaatomic emission spectrometry analysis of biological materials and soils for major trace and ultra-trace elements. Appl. Spectros.32, 1 (1978).Google Scholar
  6. Damron, B. L., and H. R. Wilson: Lead toxicity of bobwhite quail. Bull. Environ. Contam. Toxicol.14, 489 (1975).Google Scholar
  7. Edens, F. W., E. Benton, S. J. Bursian, and G. W. Morgan: Effect of dietary lead on reproductive performance in Japanese quail,Coturnix coturnix japonica, Toxicol. Appl. Pharmacol.38, 307 (1976).Google Scholar
  8. Finley, M. T., M. P. Dieter, and L. N. Locke: Lead in tissues of mallard ducks dosed with two types of lead shot. Bull. Environ. Contam. Toxicol.16, 261 (1976).Google Scholar
  9. Franson, J. C., L. Sileo, O. H. Pattee, and J. F. Moore: Effects of chronic dietary lead in American kestrels (Falco sparverius). J Wildl. Dis.19, 110 (1983).Google Scholar
  10. Getz, L. L., L. Verner, and M. Prather: Lead concentrations in small mammals living near highways. Environ. Pollut.13, 151 (1977a).Google Scholar
  11. Getz, L. L., L. B. Best, and M. Prather: Lead in urban and rural song birds. Environ. Pollut.12, 236 (1977b).Google Scholar
  12. Goldsmith, C. D., Jr., and P. F. Scanion: Lead levels in small mammals and selected invertebrates associated with highways of different traffic densities. Bull. Environ. Contam. Toxicol.17, 311 (1977).Google Scholar
  13. Grandjean, P.: Possible effect of lead on egg-shell thickness in kestrels 1874–1974. Bull. Environ. Contam. Toxicol.16, 101 (1976).Google Scholar
  14. Grue, C. E., D. J. Hoffman, and T. J. O'Shea: Lead exposure and reproduction in highway-nesting barn swallows. Condor (in press).Google Scholar
  15. Hutton, M., and G. T. Goodman: Metal contamination of feral pigeonsColumba livia from the London area: Part 1—Tissue accumulation of lead, cadmium, and zinc. Environ. Pollut. Ser. A.22, 207 (1980).Google Scholar
  16. Jacobson, E., J. W. Carpenter, and M. Novilla: Suspected lead toxicosis in a bald eagle. J. Am. Vet. Med. Assoc.171, 952 (1977).Google Scholar
  17. Johnson, M. S., H. Pluck, M. Hutton, and G. Moore: Accumulation and renal effects of lead in urban populations of feral pigeons,Columba livia. Arch. Environ. Contam. Toxicol.11, 761 (1982).Google Scholar
  18. Kaiser, T. E., W. L. Reichel, L. N. Locke, E. Cromartie, A. J. Krynitsky, T. G. Lamont, B. M. Mulhern, R. M. Prouty, C. J. Stafford, and D. W. Swineford: Organochlorine pesticides, PCB, and PBB residues and necropsy data for bald eagles from 29 states-1975–77. Pestic. Monit. J.14, 145 (1980).Google Scholar
  19. Kendall, R. J., and P. F. Scanion: Tissue lead concentrations and blood characteristics of rock doves from an urban setting in Virginia. Arch. Environ. Contam. Toxicol.11, 265 (1982a).Google Scholar
  20. —: Tissue lead concentrations and blood characteristics of mourning doves from southwestern Virginia. Arch. Environ. Contam. Toxicol.11, 269 (1982b).Google Scholar
  21. Kendall, R. J., P. F. Scanlon, and R. T. DiGiulio: Toxicology of ingested lead shot in ringed turtle doves. Arch. Environ. Contam. Toxicol.11, 259 (1982).Google Scholar
  22. Lincer, J. L., and B. McDuffie: Heavy metal residues in the eggs of wild American kestrels (Falco sparverius Linn.). Bull. Environ. Contam. Toxicol.12, 227 (1974).Google Scholar
  23. Locke, L. N., G. E. Bagley, D. N. Frickie, and L. T. Young: Lead poisoning and aspergillosis in an Andean condor. J. Am. Vet. Med. Assoc.155, 1052 (1969).Google Scholar
  24. Maedgen, J. L., C. S. Hacker, G. D. Schroder, and F. W. Weir: Bioaccumulation of lead and cadmium in the royal tern and sandwich tern. Arch. Environ. Contam. Toxicol.11, 99 (1982).Google Scholar
  25. McConnell, C. A.: Experimental lead poisoning of bobwhite quail and mourning doves. Proc. S. E. Assoc. Fish and Game Comm.21, 208 (1967).Google Scholar
  26. Morgan, G. W., F. W. Edens, P. Thaxton, and C. R. Parkhurst: Toxicity of dietary lead in Japanese quail. Poultry Sci.54, 1636 (1975).Google Scholar
  27. Munoz, R. V., Jr., C. S. Hacker, and T. F. Gesell: Environmentally acquired lead in the laughing gull,Larus atricilla. J. Wildl. Dis.12, 139 (1976).Google Scholar
  28. Neter, J., and W. Wasserman: Applied linear statistical methods. Homewood: Richard D. Irwin (1974).Google Scholar
  29. Pattee, O. H., S. N. Wiemeyer, B. M. Mulhern, L. Sileo, and J. W. Carpenter: Experimental lead-shot poisoning in bald eagles. J. Wildl. Manage.45, 806 (1981).Google Scholar
  30. Porter, R. D., and S. N. Wiemeyer: Propagation of captive American kestrels. J. Wildl. Manage.34, 594 (1970).Google Scholar
  31. Ratcliffe, D. A.: Decrease in eggshell weight in certain birds of prey. Nature215, 208 (1967).Google Scholar
  32. Roe, J. H., and C. A. Kuether: The determination of ascorbic acid in whole blood and urine through the 2,4-dinitrophenylhydrazine derivative of dehydroascorbic acid. J. Biol. Chem.147, 399 (1943).Google Scholar
  33. Stendell, R. C.: Dietary exposure of kestrels to lead. J. Wildl. Manage.44, 527 (1980).Google Scholar
  34. Stone, C., and J. H. Soares, Jr.: Studies on the metabolism of lead in Japanese quail. Poultry Sci.53, 1982 (1974).Google Scholar
  35. Udevitz, M. S., C. A. Howard, R. J. Robel, and B. Curnutte, Jr.: Lead contamination in insects and birds near an interstate highway, Kansas Environ. Entomol.9, 35 (1980).Google Scholar
  36. Watt, B. K., and A. L. Merril: Composition of foods. Agriculture handbook No. 8. Washington, DC: U.S. Government Printing Office (1963).Google Scholar
  37. Williamson, P., and P. R. Evans: Lead: Levels in roadside invertebrates and small mammals. Bull. Environ. Contam. Toxicol.8, 280 (1972).Google Scholar
  38. Winer, B. J.: Statistical principles in experimental design. New York: McGraw-Hill (1962).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1984

Authors and Affiliations

  • Oliver H. Pattee
    • 1
  1. 1.U.S. Department of the Interior, U.S. Fish and Wildlife ServicePatuxent Wildlife Research CenterLaurel

Personalised recommendations