Skip to main content

Genome mapping by random anchoring: A discrete theoretical analysis


As a part of the international human genome project, large-scale genomic maps of human and other model organisms are being generated. More recently, mapping using various anchoring (as opposed to the traditional “fingerprinting”) strategies have been proposed based largely on mathematical models. In all of the theoretical work dealing with anchoring, an anchor has been idealized as a point on a continuous, infinite-length genome. In general, it is not desirable to make these assumptions, since in practice they may be violated under a variety of actual biological situations. Here we analyze a discrete model that can be used to predict the expected progress made when mapping by random anchoring. By virtue of keeping all three length scales (genome length, clone length, and probe length) finite, our results for the random anchoring strategy are derived in full generality, which contain previous results as special cases and hence can have broad application for planning mapping experiments or assessing the accuracy of the continuum models. Finally, we pose a challenging nonrandom anchoring model corresponding to a more efficient mapping scheme.

This is a preview of subscription content, access via your institution.


  1. R. Arratia, E. S. Lander, S. Tavaré, and M. S. Waterman,Genomics 11:806 (1991).

    Google Scholar 

  2. Y. Kohara, K. Akiyama, and K. Isono,Cell 50:495 (1987).

    Google Scholar 

  3. M. V. Olson, J. E. Dutchik, M. Y. Graham, G. M. Brodeur, C. Helms, M. Frank, M. Maccollin, R. Scheinman, and T. Frank,Proc. Natl. Acad. Sci. USA 83:7826 (1986).

    Google Scholar 

  4. E. S. Lander and W. S. Waterman,Genomics 2:231 (1988).

    Google Scholar 

  5. E. Barillot, J. Dausset, and D. Cohen,Proc. Natl. Acad. Sci. USA 88:3917 (1991).

    Google Scholar 

  6. D. Torney,J. Mol. Biol. 217:259 (1991).

    Google Scholar 

  7. W. J. Ewens, C. J. Bell, P. J. Donnelly, P. Dunn, E. Matallana, and J. R. Ecker,Genomics 11:799 (1991).

    Google Scholar 

  8. T. G. Marr, X. Yan, and Q. Yu,Mamm. Genome 3:644 (1992).

    Google Scholar 

  9. M. Q. Zhang and T. G. Marr,Proc. Natl. Acad. Sci. USA 90:600 (1993).

    Google Scholar 

  10. M. J. Palazzolo, S. A. Sawyer, C. H. Martin, D. A. Smoller, and D. L. Hartl,Proc. Natl. Acad. Sci. USA 88:8034 (1991).

    Google Scholar 

  11. T. Mizukami, W. I. Chang, I. Garkavtsev, N. Kaplan, D. Lombardi, T. Matsumoto, O. Niwa, A. Kounosu, M. Yanagida, T. G. Marr, and D. Beach,Cell, in press (1993).

  12. M. Q. Zhang,J. Stat. Phys. 63:1191 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, M.Q., Marr, T.G. Genome mapping by random anchoring: A discrete theoretical analysis. J Stat Phys 73, 611–623 (1993).

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI:

Key words

  • Human genome project
  • random DNA clone mapping