Advertisement

Siberian Mathematical Journal

, Volume 30, Issue 1, pp 1–8 | Cite as

Uniqueness of domains with non-Jordan boundaries

  • V. A. Aleksandrov
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. A. Aleksandrov and A. P. Kopylov, Boundary Values of almost Isometric Mappings, and the Uniqueness of Closed Convex Surfaces [in Russian], Tez. Dokl. Simpoz. po Geomtrii v Tselom i Osnovaniyam Teorii Otnositel'nosti, Novosibirsk (1982), pp. 3–4.Google Scholar
  2. 2.
    A. P. Kopylov, “Boundary values of almost isometric mappings,” Sib. Math. Zh.,25, No. 3, 120–131 (1984).Google Scholar
  3. 3.
    V. A. Aleksandrov, “Isometry of domains inR n and the relative isometry of their boundaries. I,” Sib. Math. Zh.,30, No. 1, 3–13 (1988).Google Scholar
  4. 4.
    V. A. Aleksandrov, “Isometry of domains inR n and the relative isometry of their boundaries. II,” Sib. Math. Zh.,26, No. 6, 3–8 (1985).Google Scholar
  5. 5.
    V. A. Aleksandrov, “Unique determination of domains by the relative metric of their boundaries,” Tr. In-ta, Mat. AN SSSR, Sib. otd-nie,7, Issledovaniya po Geometrii i Matematicheskomu Analizu, 5–18 (1987).Google Scholar
  6. 6.
    H. Whitney, Geometrical Theory of Integration [Russian translation], IL, Moscow (1960).Google Scholar
  7. 7.
    A. V. Kuz'minykh, “Isometry of domains whose boundaries are isometric in the relative metrics,” Sib. Math. Zh.,26, No. 3, 91–99 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • V. A. Aleksandrov

There are no affiliations available

Personalised recommendations