Skip to main content
Log in

Laws of the iterated logarithm for partial sum processes indexed by functions

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We establish a bounded and a compact law of the iterated logarithm for partial sum processes indexed by classes of functions. We assume a growth condition on the metric entropy under bracketing. Examples show that our results are sharp. As a corollary we obtain new results for weighted sums of independent identically distributed random variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, K. S. (1984). Central limit theorems for stochastic processes under random entropy conditions.Prob. Theory Related Fields 75, 351–378.

    Google Scholar 

  2. Alexander, K. S., and Pyke, R. (1986). A uniform central limit theorem for set-indexed partial sum processes with finite variance.Ann. Prob. 14, 582–597.

    Google Scholar 

  3. Andersen, A., Giné, E., Ossiander, M., and Zinn, J. (1988). The central limit theorem and laws of the iterated logarithm for empirical processes under local conditions.Prob. Related Fields 77, 271–308.

    Google Scholar 

  4. Bass, R. F. (1986). A law of the iterated logarithm for set-indexed partial sum processes with finite variance.Z. Warsch. Verw. Geb. 70, 591–608.

    Google Scholar 

  5. Bass, R. F., and Pyke, R. (1984). Functional law of the iterated logarithm and uniform central limit theorem for partial sum processes indexed by sets.Ann. Prob. 12, 13–34.

    Google Scholar 

  6. Bingham, N. H. (1986). Variants on the law of the iterated logarithm.Bull. London Math. Soc. 18, 433–467.

    Google Scholar 

  7. Borell, C. (1975). The Brunn-Minkowski inequality in Gauss spaces.Invent. Math. 30, 207–216.

    Google Scholar 

  8. Borisov, I. S. (1985). Exponential estimates for distributions of sums of independent random fields.Siberian Math. J. 26, 7–15.

    Google Scholar 

  9. Donsker, M. D. (1951). An invariance principle for certain probability limit theorems.Mem. Amr. Math. Soc. 6.

  10. Dudley, R. M. (1967). The size of compact subsets of Hilbert space and continuity of Gaussian processes.J. Funct. Anal. 1, 290–330.

    Google Scholar 

  11. Dudley, R. M. (1978). Central limit theorems for empirical processes.Ann. Prob. 6, 899–929.

    Google Scholar 

  12. Fernique, X. (1974). Regularité des trajectoires des functions aléatories gaunssiannes.Lecture Notes Math. 480, 1–96.

    Google Scholar 

  13. Gal, I. S. (1951). Sur la majoration des suites des functions.Proc. Kon. Ned. Akad. Wet. Ser. A 54, 243–251.

    Google Scholar 

  14. Gaposhkin, V. F. (1965). The law of the iterated logarithm for Césaro and Abel's methods of summation.Theory Prob. Appl. 10, 411–420.

    Google Scholar 

  15. Giné, E., and Zinn, J. (1984). Some limit theorems for empirical processes.Ann. Prob. 12, 929–989.

    Google Scholar 

  16. Giné, E., and Zinn, J. (1987). The law of large numbers for partial sum processes indexed by sets.Ann. Prob. 15, 154–163.

    Google Scholar 

  17. Goldie, C. M., and Greenwood, P. (1986). Variance of set-indexed sums of mixing random variables and weak convergence of set-indexed processes.Ann. Prob. 14, 817–839.

    Google Scholar 

  18. Hall, P. (1981). Laws of the iterated logarithm for nonparametric density estimators.Z. Warsch. Verw. Geb. 56, 47–61.

    Google Scholar 

  19. Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables.J. Am. Statist. Assoc. 58, 13–30.

    Google Scholar 

  20. Jain, N., and Marcus, M. B. (1978). Continuity of subgaussian processes.Adv. Prob. 4, 81–196.

    Google Scholar 

  21. Kuelbs, J. D. (1968). The invariance principle for a lattice of random variables.Ann. Math. Statist. 39, 382–389.

    Google Scholar 

  22. Lai, T. L., and Wei, C. Z. (1982). A law of the iterated logarithm for double arrays of independent r.v.'s with applications to regression and time series models.Ann. Prob. 10, 320–335.

    Google Scholar 

  23. Ledoux, M., and Talagrand, M. (1989). Comparison theorems, random geometry and some limit theorems for empirical processes.Ann. Prob. 17.

  24. Ledoux, M., and Talagrand, M. (1988). Characterization of the law of the iterated logarithm in Banach spaces.Ann. Prob. 16, 1242–1264.

    Google Scholar 

  25. Morrow, G. J., and Philipp, W. (1986). Invariance principles for partial sum processes and empirical processes indexed by sets.Prob. Theory Related Fields 73, 11–42.

    Google Scholar 

  26. Pisier, G. (1987). Probabilistic methods in the geometry of Banach spaces.Probability and Analysis. Lecture Notes Math.1020, 167–241.

    Google Scholar 

  27. Pless, V. (1982).Introduction to the Theory of Error-Correcting Codes. Wiley, New York.

    Google Scholar 

  28. Pyke, R. (1983). A uniform central limit theorem for partial sum processes indexed by sets. InProbability, Statistics, and Analysis. (J. F. C. Kingman, and G. E. H. Reuter, eds.), pp. 219–240. Cambridge Univ. Press.

  29. Stackelberg, O. (1964). On the law of the iterated logarithm.Proc. Kon. Ned. Akad. Wet. Ser. A 67, I48–55,I 56–67.

    Google Scholar 

  30. Stadtmüller, U. (1984). A note on the law of the iterated logarithm for weighted sums of random variables.Ann. Prob. 12, 35–44.

    Google Scholar 

  31. Strassen, V. (1964). An almost sure invariance principle for the law of the iterated logarithm.Z. Warsch. Verw. Geb. 3, 211–226.

    Google Scholar 

  32. Talagrand, M. (1985). Regularity of Gaussian processes.Acta Math. 159, 99–149.

    Google Scholar 

  33. Wichura, M. J. (1973). Some Strassen-type laws of the iterated logarithm for multiparameter stochastic processes with independent increments.Ann. Prob. 1, 272–296.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacey, M. Laws of the iterated logarithm for partial sum processes indexed by functions. J Theor Probab 2, 377–398 (1989). https://doi.org/10.1007/BF01054022

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01054022

Key Words

Navigation