Skip to main content
Log in

Normal forms for random diffeomorphisms

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Given a dynamical system (Ω,, ℙ,θ) and a random diffeomorphism ϕ(ω): ℝd → ℝd with fixed point at x=0. The normal form problem is to construct a smooth near-identity nonlinear random coordinate transformation h(ω) to make the random diffeomorphism\(\tilde \varphi \)(ω)=h(θω)−1○ϕ(ω)○ h(ω) “as simple as possible,” preferably linear. The linearization Dϕ(ω, 0)=:A(ω) generates a matrix cocycle for which the multiplicative ergodic theorem holds, providing us with stochastic analogues of eigenvalues (Lyapunov exponents) and eigenspaces. Now the development runs pretty much parallel to the deterministic one, the difference being that the appearance ofθ turns all problems into infinite-dimensional ones. In particular, the range of the homological operator is in general not closed, making the conceptofε-normal form necessary. The stochastic versions of resonance and averaging are developed. The case of simple Lyapunov spectrum is treated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anosov, D. V., and Arnold, V. I. (eds.) (1988).Dynamical System I, Springer Verlag, New York.

    Google Scholar 

  • Arnold, L. (1966). Über die Konvergenz einer zufälligen Potenzreihe.J. Reine Angewandte Math.222, 79–112.

    Google Scholar 

  • Arnold, L., and Crauel, H. (1991). Random dynamical systems. In Arnold, L., Crauel, H., and Eckmann, J.-P. (eds.),Lyapunov Exponents, Vol. 1486, Lecture Notes in Mathematics, Springer Verlag, Berlin, pp. 1–22.

    Google Scholar 

  • Arnold, L., and San Martin, L. (1989). A multiplicative ergodic theorem for rotation numbers.J. Dynam. Diff. Eg.1, 95–119.

    Google Scholar 

  • Arnold, L., and Xu, K.-D. (1991a). Normal forms for random differential equations (submitted for publication).

  • Arnold, L., and Xu, K.-D. (1991b). Simultaneous normal form and center manifold reduction for random differential equations (submitted for publication).

  • Arnold, V. I. (1983).Geometrical Methods in the Theory of Ordinary Differential Equations, Grundlehren 250, Springer Verlag, Berlin.

    Google Scholar 

  • Bougerol, Ph. (1980). Comparaison des exposants de Lyapounov des processus markoviens multiplicatifs.Ann. Inst. Henri Poincaré 24, 439–489.

    Google Scholar 

  • Bougerol, Ph., and Lacroix, J. (1985).Products of Random Matrices with Applications to Schrödinger Operators, Birkhäuser, Boston, Basel.

    Google Scholar 

  • Boxler, P. (1985). A stochastic version of center manifold theory.Probab. Th. Rel. Fields 83, 509–545.

    Google Scholar 

  • Cornfeld, I. P., Fomin, S. V., and Sinai, Ya. G. (1982).Ergodic Theory, Springer Verlag, Berlin.

    Google Scholar 

  • Coullet, P. H., Elphick, C., and Tirapegui, E. (1985). Normal form of a Hopf bifurcation with noise.Phys. Lett.111A, 277–282.

    Google Scholar 

  • Crauel, H. (1990). Extremal exponents of random dynamical systems do not vanish.J. Dynam. Diff. Eq.2, 245–291.

    Google Scholar 

  • Deimling, K. (1985).Nonlinear Functional Analysis, Springer Verlag, Berlin.

    Google Scholar 

  • Doob, J. L. (1953).Stochastic Processes, Wiley, New York.

    Google Scholar 

  • Elphick, C., and Tirapegui, E. (1987). Normal forms with noise. In Tirapegui, E., and Villamoel, D. (eds.),Instabilities and Nonequilibrium Structures, Reidel, Dordrecht, pp. 299–310.

    Google Scholar 

  • Elphick, C., M. E. Tirapegui, Brachet, M. E., Coullet, P. H., and Iooss, G. (1987). A simple global characterization for normal forms of singular vector fields.Physica 29, 95–127.

    Google Scholar 

  • Goldsheid, I. Ya., and Margulis, G. A. (1989). Lyapunov indices of products of random matrices.Uspekhi Mat. Nauk 44(6), 13–60. (Russ. Math. Surv.44(6), 11–71, 1989.)

    Google Scholar 

  • Graham, A. (1981).Kronecker Products and Matrix Calculus with Applications, Ellis Horwood, Chichester.

    Google Scholar 

  • Guckenheimer, J., and Holmes, Ph. (1983).Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Berlin, Springer Verlag.

    Google Scholar 

  • Irwin, M. C. (1980).Smooth Dynamical Systems, Academic Press, London.

    Google Scholar 

  • Nicolis, C., and Nicolis, G. (1986). Normal form analysis of stochastically forced dynamical systems.Dynam. Stabil. Syst.1, 249–253.

    Google Scholar 

  • Oseledec, V. I. (1968). A multiplicative ergodic theorem—Lyapunov characteristic numbers for dynamical systems.Trans. Moscow Math. Soc.19, 197–231.

    Google Scholar 

  • Poincaré, H. (1892).Les Méthodes Nouvelles de la Mécanique Celeste I–III, Gauthier-Villars, Paris.

    Google Scholar 

  • Ruelle, D. (1979). Ergodic theory of differentiable dynamical systems.Publ. Math. IHES 50, 27–58.

    Google Scholar 

  • Sri Namachchivaya, N., and Leng, G. (1990). Equivalence of stochastic averaging and stochastic normal forms.J. Appl. Mech. (ASME) 57(4), 1011–1017.

    Google Scholar 

  • Sri Namachchivaya, N., and Lin, Y. K. (1991). Method of stochastic normal forms.Int. J. Nonlin. Mech. 26.

  • Tirapegui, E. (1988). Normal forms for deterministic and stochastic systems. In Bamón, R., Labarca, R., and Palis, J., Jr. (eds.),Dynamical Systems, Valparaiso, 1986, Vol. 1331, Lecture Notes in Mathematics, Springer Verlag, Berlin.

    Google Scholar 

  • Vanderbauwhede, A. (1989). Center manifolds, normal forms and elementary bifurcations. In Kirchgraber, U., and Walter, H. O. (eds.),Dynamics Reported, Vol. 2, Teubner and Wiley, New York, pp. 89–169.

    Google Scholar 

  • Wiggins, S. (1990).Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer Verlag, Berlin.

    Google Scholar 

  • Xu, K.-D. (1990).Normalformen für zufällige dynamische Systeme, Ph.D. thesis, Universität Bremen, Bremen.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, L., Kedai, X. Normal forms for random diffeomorphisms. J Dyn Diff Equat 4, 445–483 (1992). https://doi.org/10.1007/BF01053806

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053806

Key words

Navigation