Skip to main content
Log in

Sobolev inequalities on homogeneous spaces

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We consider a homogeneous spaceX=(X, d, m) of dimension ν≥1 and a local regular Dirichlet forma inL 2 (X, m). We prove that if a Poincaré inequality of exponent 1≤p<ν holds on every pseudo-ballB(x, R) ofX, then Sobolev and Nash inequalities of any exponentq∈[p, ν), as well as Poincaré inequalities of any exponentq∈[p, +∞), also hold onB(x, R).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biroli M., Mosco U.,Sobolev inequalities for Dirichlet forms on homogeneous spaces, in “Boundary value problems for partial differential equations and applications”, C. Baiocchi and J.L. Lions Eds., Research Notes in Applied Mathematics, Masson, 1993.

    Google Scholar 

  2. Biroli M., Mosco U.,Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces, Rend. Mat. Acc. Lincei (1994), Roma, to appear.

  3. Coifman R.R., Weiss G.,Analyse harmonique sur certaines espaces homogènes, Lectures Notes in Math. 242, Springer V., Berlin-Heidelberg-New York, 1971.

    Google Scholar 

  4. Fukushima M.,Dirichlet forms and Markov processes, North Holland Math. Library, North Holland, Amsterdam, 1980.

    Google Scholar 

  5. Mosco U.,Composite media and asymptotic Dirichlet forms, J. Funct. Anal.123, 2 (1994), 368–421.

    Google Scholar 

  6. Stampacchia G., Le problème de Dirichlet pour les equations elliptiques du second ordre à coefficient discontinus, Ann. Inst. Fourier, 15(1965), 189–258.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Lavoro eseguito nell'ambito del Contratto CNR “Strutture variazionali irregolari”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biroli, M., Mosco, U. Sobolev inequalities on homogeneous spaces. Potential Anal 4, 311–324 (1995). https://doi.org/10.1007/BF01053449

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053449

AMS Class

Key words

Navigation