Abstract
We consider a homogeneous spaceX=(X, d, m) of dimension ν≥1 and a local regular Dirichlet forma inL 2 (X, m). We prove that if a Poincaré inequality of exponent 1≤p<ν holds on every pseudo-ballB(x, R) ofX, then Sobolev and Nash inequalities of any exponentq∈[p, ν), as well as Poincaré inequalities of any exponentq∈[p, +∞), also hold onB(x, R).
Similar content being viewed by others
References
Biroli M., Mosco U.,Sobolev inequalities for Dirichlet forms on homogeneous spaces, in “Boundary value problems for partial differential equations and applications”, C. Baiocchi and J.L. Lions Eds., Research Notes in Applied Mathematics, Masson, 1993.
Biroli M., Mosco U.,Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces, Rend. Mat. Acc. Lincei (1994), Roma, to appear.
Coifman R.R., Weiss G.,Analyse harmonique sur certaines espaces homogènes, Lectures Notes in Math. 242, Springer V., Berlin-Heidelberg-New York, 1971.
Fukushima M.,Dirichlet forms and Markov processes, North Holland Math. Library, North Holland, Amsterdam, 1980.
Mosco U.,Composite media and asymptotic Dirichlet forms, J. Funct. Anal.123, 2 (1994), 368–421.
Stampacchia G., Le problème de Dirichlet pour les equations elliptiques du second ordre à coefficient discontinus, Ann. Inst. Fourier, 15(1965), 189–258.
Author information
Authors and Affiliations
Additional information
Lavoro eseguito nell'ambito del Contratto CNR “Strutture variazionali irregolari”.
Rights and permissions
About this article
Cite this article
Biroli, M., Mosco, U. Sobolev inequalities on homogeneous spaces. Potential Anal 4, 311–324 (1995). https://doi.org/10.1007/BF01053449
Issue Date:
DOI: https://doi.org/10.1007/BF01053449