Skip to main content

Advertisement

Log in

Agriculture and energy with special reference to mineral fertilization

  • Published:
Fertilizer research Aims and scope Submit manuscript

Abstract

  1. 1.

    The world consumption of energy is roughly 250 EJ. It increases with the level of technology and gross national product of a country. More than 83% of world energy consumption is used by the industrialized countries with one third of the world population; not quite 17% is used by the developing countries with two thirds of the world population. The world's resources of fossil fuels are estimated at 364,560 EJ; about 5–13% of this, and 31% in the case of natural gas, are considered reserves that are economically recoverable and utilizable with current technologies.

  2. 2.

    Agriculture's share of the economy's energy consumption in the Federal Republic of Germany is about 3.4%. It was five times higher per hectare of agricultural land in 1975 than in 1880, but the productivity of the energy was only half as high because of the enormous increase in productivity per unit of labor and area. In absolute terms, however, energy production per unit area increased tremendously, with gross agricultural production two and a half times its earlier size.

  3. 3.

    As a producer of plant material, agriculture qualifies as an energy producer, while as a producer of livestock it also is an energy consumer. In fact, through plant production agriculture becomes the only branch of our economic system that produces more energy than it consumes as fossil energy. Agriculture uses about 40% of its energy requirement for fuel, about 20% for machinery repair and replacement, 30% for mineral fertilizers, about 10% for electricity, and 1–2% for chemical crop protection. Forestry can be evaluated as particularly favorable from the energy viewpoint, while hothouse crops are very unfavorable. Agricultural chemicals support the energy output of green plants; agriculture as a whole is on balance energetically.

  4. 4.

    Solar energy and photosynthesis are the primary sources of energy to our plant. About 3 million EJ solar energy are radiated to the earth annually; 3000 EJ are fixed photosynthetically (2 ⋅ 1011 tons vegetable matter); the food requirement of 4 billion people is 15EJ. Another item of interest on the periphery of the energy balance is the enrichment of our atmosphere with oxygen, which has been accomplished for millions of years solely by the photosynthesis of green plants.

  5. 5.

    Through their additional yield effect, mineral fertilizers increase the energy output of plants more strongly than just the equivalent of the energy input. They cause the plant to produce more foliage and thereby promote more intensive assimilation, which means that mineral fertilizers enable the plant to utilize free solar energy better. A calculation of the energy involved in long-term field trials in cereals disclosed energy input: energy output ratios of 1:5.8 and 1:6.1.

  6. 6.

    Chemical crop protection has a similar effect since it protects against loss of plantproduced energy. Based on an average energy expenditure of 263 MJ ha−1 per kg ha−1 ‘typical’ active ingredient for a crop protection product, additional yields of only 4–4.5% — or considerably less in the case of high-energy crops such as cereals or sugar beets — would be sufficient to cover the energy expenditure; as a rule, however, the productivity of the chemical crop protectants is higher. The biological potential of our crops to utilize solar energy also has been improved considerably compared to earlier times — with cereals, for example, from 0.25% per unit area during the Middle Ages to 1.5% today; theoretically 4% is possible. The thesis that agrochemical aids in agriculture and horticulture are a waste of energy is unjustified.

  7. 7.

    Biomass also creates energy. Experts estimate the utilizable annual production of biomass in the Federal Republic of Germany to be 30 million tons mineral coal units (1 coal unit = 29.3 MJ), whereby undersized and refuse wood, straw and biogas are of special significance. Especially “fuel forests' of, for example, willows, poplars and alders could produce the equivalent of 486,000 MJ by way of 30 tha−1 biomass, contributing sizably to the fuel supply of the nation; at the moment, the conventional form of forestry produces only 30,240 MJ. It is considered feasible in Sweden to supply the entire energy requirement of the country from 93,000 km2 of ‘fuel forest’, and it must be remembered that mineral fertilization could be used to increase the productivity of land used for this purpose relatively quickly if the need were to become acute. The extraction of alcohol from crops offers other interesting aspects; the currently highest yield fuel crops (sugar beet, sugarcane and cassava) produce between 4,900 and 10,700 l ha−1 alcohol.

  8. 8.

    The energy problem of modern economies will not find its complete answer in the green plant. Prudent and well contemplated use of the green plant, however, may eventually do much to take the edge off today's energy dilemma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amberger A (1979) Pflanzenernährung. Uni-Taschenbücher Nr 846, 1–233

    Google Scholar 

  2. Appl M (1976) A brief history of ammonia production from the early days to the present. Nitrogen No 100, 47–58

    Google Scholar 

  3. Basler A and Wendt H (1979) Aktuelle Probleme der Welternährung und Ansätze zu ihrer Lösung. Agrarwirtschaft 28, 21–31

    Google Scholar 

  4. Baule H (1979) Agrarwirtschaft und Energie. Chemie und Technik in Landwirtschaft 30, 26–28

    Google Scholar 

  5. Bickel H (1978) Energieeinsatz und Energieumsetzung im Bereich Tierproduktion. Vortrag Dachverband wissenschaftlicher Gesellschaften der Agrar-, Forst-, Ernäh-rungs-, Veterinär- und Umweltforschung e.V., Müchen, 6–8 November

  6. Bommer DFR (1976) Landbewirtschaftung im internationalen Vergleich. Chemie und Fortschritt, VCI-Schriftenreihe 2, 3–13

    Google Scholar 

  7. Council for Agriculture and Technology (1977) Report No. 68

  8. Dachverband Wissenschaftlicher Gesellschaften der Agrar-, Forst- Ernährungs-, Veterinär- und Umweltforschung e.V. (1978) Agrarwirtschaft und Energie. Kongreß München 6–8 November

  9. Dekkers WA, Lange JM, De Wit CT (1974) Energy production and use in Dutch agriculture. Neth J Agric Sci 22, 107–118

    Google Scholar 

  10. Deutsche Shell AG (1979) Unterrichtsmodell Energie, 3. überarb. Auflage. Hamburg, 1–341

  11. Diercks R (1979) Energieeinsparung in der Pflanzenproduktion, Bereich Pflanzenschutz. Vortrag Dachverband wissenschaftlicher Gesellschaften der Agrar-, Forst-, Ernährungs-, Veterinär- und Umweltforschung e.V., München, 6–8 November

  12. Diercks R (1979) Energieeinsparung im Pflanzenschutz. Gesunde Pflanzen 31, 1–13

    Google Scholar 

  13. Fao (1976) Energy for agriculture in the developing countries. Monthly Bull Agric Econ and Statist 25 (2), Febr., 1–8

    Google Scholar 

  14. Fao (1976) The state of food and agriculture. 3. Energy and agriculture. FAO Agriculture Series, No 4, 81–111

    Google Scholar 

  15. Green MB (1979) Personal communication. Letter of 26th October

  16. Hagel J (1978) Ressourcen und Reserven. Kosmos 8, 548

    Google Scholar 

  17. Hall DO (1978) Welt-Energiebilanz. Vortrag Intern. Symp. ‘Bioenergie — Energie aus lebenden Systemen’, Zürich-Rüschlikon, Jan.; ref Chem Ind 30, 146

    Google Scholar 

  18. Hampicke U (1979) Wie ist eine umweltgerechte Landwirtschaftsreform möglich? Landschaft und Stadt 11, 68–81

    Google Scholar 

  19. Hawthorn J (1975) Energy usage in food processing and distribution. Span 18, 15–16

    Google Scholar 

  20. Heyland K-U (1978) Energieeinsatz und Energieumsetzung im Bereich Pflanzenproduktion. Vortrag Dachverband wissenschaftlicher Gesellschaften der Agrar-, Forst-, Ernährungs-, Veterinär- und Umweltforschung e.V., München, 6–8 November

  21. Huber H (1976) Ein Versuch zur Betrachtung der Landwirtschaft aus energetischer Sicht. Mitt Schweiz Landw 24, 81–98

    Google Scholar 

  22. Jürgens-Gschwind S (1978) Moderner Landbau in der Umweltdiskussion. BASF-Informationen über Agrarchemikalien 87048/12, 1–64

    Google Scholar 

  23. Kohlmeyer M (1979) Energieaufwand und Energieertrag in der Landwirtschaft. Pressekonferenz Ruhr-Stickstoff, 9 November

  24. Kohlmeyer M (1979) Ist Landwirtschaft eine Energieverschwendung? Hannoversche Land- und Forstwirtsch Ztg 132, Nr. 51/52, 24–27

    Google Scholar 

  25. Kradel J (1978) Qualität des Lebens und die Chemie. BASF-Information über Agrarchemikalien 87001, 1–34

    Google Scholar 

  26. Künzler E (1978) Der Energieverbrauch in der Landwirtschaft aus der Sicht der Agrarchemie. Vortrag Intern. Tagung Energie und Landwirtschaft, Zürich-Rüschlikon, 25–27 Mai

  27. Lavers BA (1979) Wieviel Erdöl haben wir noch? Geschäftsbericht der Royal Dutch N.V. Koninklijke Nederlandsche Petroleum Maatschappij, 20–21

  28. Leach G (1976) Energy and food production. IPC Business Press Ltd

  29. Lewis DA, Tatchell JA (1979) Energy in the UK agriculture. J Sci Food Agric 30, 449–457

    Google Scholar 

  30. Mannesmann (1978) Energie-Versorgung und -Verbrauch. Rohrpost, H 67, 22–23

    Google Scholar 

  31. Mraczek M (1977) Energiebilanzen in der landwirtschaftlichen Erzeugung. Im Blickfeld 47, 5–8

    Google Scholar 

  32. N.N. (1978) Energie-Verbrauch. Handelsbl 82, 10 Mai, 27

  33. Patzack W (1978) Energieeinsatz und Energieumsetzung im Bereich Forstwirtschaft. Vortrag Dachverband wissenschaftlicher Gesellschaften der Agrar-, Forst-, Ernährungs-, Veterinär- und Umweltforschung e.V., München, 6–8 November

  34. Pimentel D and Pimentel M (1977) Counting the kilocalories ref. Künzler [26]. Ceres 10, 17–21

    Google Scholar 

  35. Pirt SJ (1978) Anaerobic microbial digestion as a route to methane and renewable carbon sources. Paper Chemrawn-Conference, July, Toronto

  36. Rehm S (1975) Energieverwertung in der pflanzlichen Produktion unter dem Aspekt der Welternährung. Tropenlandwirt 76, April, 9–17

    Google Scholar 

  37. Reinken G (1979) Energiesituation heute und morgen. Landwirtsch Z 15, 1011–1014

    Google Scholar 

  38. Reinken G (1979) Möglichkeiten der Energieeinsparung und -gewinnung in Landwirtschaft und Gartenbau. Landwirtsch Z 15, 1014–1016

    Google Scholar 

  39. Storck H (1978) Energieeinsatz und Energieumsetzung im Bereich Gartenbau. Vortrag Dachverband wissenschaftlicher Gesellschaften der Agrar-, Forst-, Ernäh-rungs-, Veterinär- und Umweltforschung e.V., München, 6–8 November

  40. Strehler (1978) Stroh und Holz statt Öl. Handelsblatt 33, 2 Jan.; ref Gwinner E (1978) Wirtschaftliche Aspekte der Biochemie, Bioenergie und Biotechnologie. Verlag Handelsblatt GmbH Düsseldorf, 1–189

  41. Studer R (1978) Energie-Input und -Output in der schweizerischen Landwirtschaft. Vortrag XIX. CIOSTA-Kongreß, Ermatingen/Schweiz, 4 September, 1–13

    Google Scholar 

  42. Türke (1978) Energetische Verhältnisse beim Einsatz von mineralischen N-Düngemitteln im Getreidebau. Unveröffentl. Manuskript, 1–10

  43. Van Monsjou W (1975) Food — Fertiliser — Energy — Efficiency. Paper Fertiliser Society of London, 11 Dec., 3–21

    Google Scholar 

  44. Weber A (1979) Energieeinsatz und Energieumwandlung in der deutschen Landwirtschaft. AID-Information 28, Nr. 21, 1–13

    Google Scholar 

  45. Zeddies J (1979) Energieeinsatz in der Landwirtschaft. Information für die Landwirtschaftsberatung in Baden-Württ., Nr. 3, 75–87

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jürgens-Gschwind, S. Agriculture and energy with special reference to mineral fertilization. Fertilizer Research 1, 137–155 (1980). https://doi.org/10.1007/BF01053128

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053128

Key words

Navigation