Skip to main content
Log in

Blood flow and metabolic microenvironment of brain tumors

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Conclusions

Summarizing thesein vivo data in the context of brain tumor therapy, the following aspects are of particular importance: Low and heterogeneous tumor blood flow may — in addition to the limiting effects of the blood-brain barrier — result in compromised delivery of drugs from blood to the tissue. Low tumor pO2 reduces sensitivity to standard radiation and ‘O2-dependent’ anticancer drugs. Treatment efficacy may be further altered by changes of tumor pH. Particularly acidosis can decrease radiation sensitivity and modulate the cytotoxicity of anticancer drugs. In the following presentations, these aspects will be discussed regardingin vivo data obtained with positron emission tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blasberg RG, Kobayashi T, Patlak CS, Shinohara M, Miyoaka M, Rice JM, Shapiro WR: Regional blood flow, capillary permeability, and glucose utilization in two brain tumor models: Preliminary observations and pharmacokinetic implications. Cancer Treatment Rep 65 (Suppl. 2): 3–12, 1981

    Google Scholar 

  2. Hossmann KA, Niebuhr I, Tamura M: Local cerebral blood flow and glucose consumption of rats with experimental gliomas. J Cerebr Blood Flow Metab 2: 25–32, 1982

    Google Scholar 

  3. Groothuis DR, Pasternak JF, Fischer JM, Blasberg RG, Bigner DD, Vick NA: Regional measurements of blood flow in experimental RG-2 rat gliomas. Cancer Res 43: 3362–3367, 1983

    Google Scholar 

  4. Groothuis DR, Molnar P, Blasberg RG: Regional blood flow and blood-to-tissue transport in five brain tumor models. Implications for chemotherapy. Progr Exp Tumor Res 27: 132–153, 1984

    Google Scholar 

  5. Blasberg RG, Molnar P, Groothuis D, Patlak C, Owens E, Fenstermacher J: Concurrent measurements of blood flow and transcapillary transport in avian sarcoma virus-induced experimental brain tumors: Implications for chemotherapy. J Pharmacol Exp Ther 231: 724–735, 1984

    Google Scholar 

  6. Ross BD, Mitchell SL, Merkle H, Garwood M:In vivo 31P and2H NMR studies of rat brain tumor pH and blood flow during acute hyperglycemia: Differential effects between subcutaneous and intracerebral locations. Magn Reson Med 12: 219–234, 1989

    Google Scholar 

  7. Blasberg RG, Horowitz M, Strong J, Molnar P, Patlak C, Owens E, Fenstermacher J: Regional measurements of [14C]misonidazole distribution and blood flow in subcutaneous RT-9 experimental tumors. Cancer Res 45: 1692–1701, 1985

    Google Scholar 

  8. Hiraga S, Klubes P, Owens ES, Cysyk RL, Blasberg RG: Increases in brain tumor and cerebral blood flow by bloodperfluorochemical emulsion (fluosol-DA) exchange. Cancer Res 47: 3296–3302, 1987

    Google Scholar 

  9. Steen RG, Graham MM:31P magnetic resonance spectroscopy is sensitive to tumor hypoxia: Perfusion and oxygenation of rat 9L gliosarcoma after treatment with BCNU. NMR Biomed 4: 117–124, 1991

    Google Scholar 

  10. Sakurada O, Kennedy C, Jehle J, Brown JD, Carbin GL, Sokoloff L: Measurement of local cerebral blood flow with iodo [14C]antipyrine. Am J Physiol 234: H59-H66, 1978

    Google Scholar 

  11. Vriesendorp FJ, Peagram C, Bigner DD, Groothuis DR: Concurrent measurements of blood flow and transcapillary transport in xenotransplanted human gliomas in immunosuppressed rats. J Natl Cancer Inst 79: 123–130, 1987

    Google Scholar 

  12. Warnke PC, Friedman HS, Bigner DD, Groothuis DR: Simultaneous measurements of blood flow and blood-to-tissue in xenotransplanted medulloblastomas. Cancer Res 47: 1687–1690, 1987

    Google Scholar 

  13. Vaupel P: Physiological properties of malignant tumours. NMR Biomed 5: 220–225, 1992

    Google Scholar 

  14. Vaupel P, Kallinowski F, Okunieff P: Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors. A review. Cancer Res 49: 6449–6455, 1989

    Google Scholar 

  15. Beaney RP, Brooks DJ, Leenders KL, Thomas DGT, Jones T, Halnan K: Blood flow and oxygen utilisation in the contralateral cerebral cortex of patients with untreated intracranial tumours as studied by positron emission tomography, with observations on the effects of decompressive surgery. J Neurol Neurosurg Psych 48: 310–319, 1985

    Google Scholar 

  16. Ito M, Lammertsma AA, Wise RJS, Bernardi S, Frackowiak RSJ, Heather JD, McKenzie CG, Thomas DGT, Jones T: Measurement of regional cerebral blood flow and oxygen utilisation in patients with cerebral tumours using15O and positron emission tomography: analytical techniques and preliminary results. Neuroradiol 23: 63–74, 1982

    Google Scholar 

  17. Lammertsma AA, Wise RJS, Cox TCS, Thomas DGT, Jones T: Measurement of blood flow, oxygen utilisation, oxygen extraction ratio, and fractional blood volume in human brain tumours and surrounding oedematous tissue. Br J Radiol 58: 725–734, 1985

    Google Scholar 

  18. Oleson J, Paulson OB: The effect of intra-arterial papaverine on the regional cerebral blood flow in patients with stroke or intracranial tumor. Stroke 2: 148–159, 1971

    Google Scholar 

  19. Rhodes CG, Wise RJS, Gibbs JM, Frackowiak RSJ, Hatazawa J, Palmer AJ, Thomas DGT, Jones T:In vivo disturbance of the oxidative metabolism of glucose in human cerebral gliomas. Ann Neurol 14: 614–626, 1983

    Google Scholar 

  20. Rampling R, Cruickshank G, Lewis AD, Fitzsimmons SA, Workman P: Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumours. Int J Radiat Oncol Biol Phys 29: 427–432, 1994

    Google Scholar 

  21. Lübbers DW, Baumgärtl H, Zimelka W: Heterogeneity and stability of local pO2 distribution within the brain tissue. Adv Exp Med Biol 345: 567–574, 1994

    Google Scholar 

  22. Vaupel P, Schlenger K, Knoop C, Hoeckel M: Oxygenation of human tumors: Evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res 51: 3316–3322, 1991

    Google Scholar 

  23. Hoeckel M, Schlenger K, Knoop C, Vaupel P: Oxygenation of carcinomas of the uterine cervix: Evaluation of computerized O2 tension measurements. Cancer Res 51: 6098–6102, 1991

    Google Scholar 

  24. Beaney RP: Positron emission tomography in the study of human tumors. Semin Nucl Med 14: 324–341, 1984

    Google Scholar 

  25. Lebrun-Grandié P, Baron JG, Soussaline F, Loch'h C: Coupling between regional blood flow and oxygen utilization in the normal human brain. Arch Neurol 40: 230–236, 1983

    Google Scholar 

  26. Lammertsma AA, Jones T: Low oxygen extraction fraction in tumours measured with the oxygen-15 steady state technique: effect of tissue heterogeneity. Br J Radiol 65: 697–700, 1992

    Google Scholar 

  27. Warburg O: The metabolism of tumors. London, Arnold Constable, 1930

    Google Scholar 

  28. Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, Patronas NJ, Kufta CV, Kessler RM, Johnston GS, Manning RG, Wolf AP: Glucose utilization of cerebral gliomas measured by [18F]fluorodeoxyglucose and positron emission tomography. Neurology 32: 1323–1329, 1982

    Google Scholar 

  29. Di Chiro G, Brooks RA, Patronas NJ, Bairamian D, Kornblith PL, Smith BH, Mansi L, Barker J: Issues in thein vivo measurement of glucose metabolism of human central nervous system tumors. Ann Neurol 15 (Suppl.): S138-S146, 1984

    Google Scholar 

  30. Patronas NJ, Di Chiro G, Brooks RA, DeLaPaz RL, Kornblith PL, Smith BH, Rizzoli HV, Kessler RM, Manning RG, Channing M, Wolf AP, O'Connor CM: [18F]Fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiology 144: 885–889, 1982

    Google Scholar 

  31. Kuhl DE, Phelps ME, Kowell AP, Metter EJ, Selin C, Winter J: Effects of stroke on local cerebral metabolism and perfusion: mapping by emission computed tomography of18FDG and13NH3. Ann Neurol 8: 47–60, 1980

    Google Scholar 

  32. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L: The [18F]-fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44: 127–137, 1979

    Google Scholar 

  33. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE: Tomographic measurement of local cerebral glucose metabolic rate in humans with [F-18] 2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6: 371–388, 1979

    Google Scholar 

  34. Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE: Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238: E69-E82, 1980

    Google Scholar 

  35. Di Chiro G, Hatazawa J, Katz DA, Rizzoli HV, de Michele DJ: Glucose utilization by intracranial meningiomas as an index of tumor aggressivity and probability of recurrence: a PET study. Radiol 164: 521–526, 1987

    Google Scholar 

  36. Herholz K, Heindel W, Luyten PR, den Hollander JA, Pietrzyk U, Voges J, Kugel H, Friedmann G, Heiss WD:In vivo imaging of glucose consumption and lactate concentration in human gliomas. Ann Neurol 31: 319–327, 1992

    Google Scholar 

  37. Herholz K, Wienhard K, Heiss WD: Validity of PET studies in brain tumors. Cerebrovasc Brain Metab Rev 2: 240–265, 1990

    Google Scholar 

  38. Tyler JL, Diksic M, Villemure JG, Evans AC, Yamamoto YL, Feindel W: Metabolic and hemodynamic evaluation of gliomas using positron emission tomography. J Nucl Med 28: 1123–1133, 1987

    Google Scholar 

  39. Griffiths JR: Are cancer cells acidic? Br J Cancer 64: 425–427, 1991

    Google Scholar 

  40. Jähde E, Rajewsky MF, Baumgärtl H: pH distributions in transplanted neural tumors and normal tissues of BDIX rats as measured with pH microelectrodes. Cancer Res 42: 1498–1504, 1982

    Google Scholar 

  41. Arnold JB, Kraig RP, Rottenberg DA:In vivo measurements of regional brain and tumor pH using [14C]dimethyloxazolidinedione and quantitative autoradiography. II: Characterization of the extracellular fluid compartment using pH-sensitive microelectrodes and [14C]sucrose. J Cereb Blood Flow Metab 6: 435–440, 1986

    Google Scholar 

  42. Kearfott KJ, Junck L, Rottenberg DA: C-11 dimethyloxazolidinedione(DMO): Biodistribution, radiation absorbed dose, and potential for PET measurement of regional brain pH: Concise communication. J Nucl Med 24: 805–811, 1983

    Google Scholar 

  43. Siesjö BK, Folbergova J, Macmillan V: The effect of hypercapnia upon intracellular pH in the brain, evaluated by the bicarbonate-carbonic acid method and from creatine phosphokinase equilibrium. J Neurochem 19: 2483–2495, 1972

    Google Scholar 

  44. Junck L, Blasberg R, Rottenberg DA: Brain and tumor pH in experimental leptomeningeal carcinomatosis. Transact Amer Neurol Assoc 106: 298–301, 1981

    Google Scholar 

  45. Arnold JB, Junck L, Rottenberg DA:In vivo measurement of regional brain and tumor pH using [14C]dimethyloxazolidinedione and quantitative autoradiography. J Cerebr Blood Flow Metab 5: 369–375, 1985

    Google Scholar 

  46. Koeze TH, Lantos PL, Iles RA, Gordon RE:In vivo nuclear magnetic resonance spectroscopy of a transplanted brain tumour. Br J Cancer 49: 357–361, 1984

    Google Scholar 

  47. Csiba L, Paschen W, Hossmann KA: A topographic quantitative method for measuring brain tissue pH under physiological and pathophysiological conditions. Brain Res 289: 334–337, 1983

    Google Scholar 

  48. Hossmann KA, Mies G, Paschen W, Szabo L, Dolan E, Wechsler W: Regional metabolism of experimental brain tumors. Acta Neuropathol 69: 139–147, 1986

    Google Scholar 

  49. Paschen W, Djuricic B, Mies G, Schmidt-Kastner R, Linn F: Lactate and pH in the brain: Association and dissociation in different pathophysiological states. J Neurochem 48: 154–159, 1987

    Google Scholar 

  50. Paschen W: Regional quantitative determination of lactate in brain sections. A bioluminescent approach. J Cerebr Blood Flow Metab 5: 609–612, 1985

    Google Scholar 

  51. Kogure K, Alonso OF: A pictorial representation of endogenous brain ATP by a bioluminescent method. Brain Res 154: 273–284, 1978

    Google Scholar 

  52. Hossmann KA, Linn F, Okada Y: Bioluminescence and fluoroscopic imaging of tissue pH and metabolites in experimental brain tumors of cat. NMR Biomed 5: 259–264, 1992

    Google Scholar 

  53. den Hollander JA, Luyton PR: Image-guided localized1H and31P NMR spectroscopy of humans. Ann NY Acad Sci 508: 386–398, 1987

    Google Scholar 

  54. Oberhaensli RD, Hilton-Jones D, Bore PJ, Hands LJ, Rampling RP, Radda GK: Biochemical investigation of human tumoursin vivo with phosphorus — 31 magnetic resonance spectroscopy. Lancet 1: 8–11, 1986

    Google Scholar 

  55. Ng TC, Majors AW, Meaney TF:In vivo MR spectroscopy of human subjects with a 1.4-T whole body MR imager. Radiology 158: 517–520, 1986

    Google Scholar 

  56. Segebarth CM, Balériaux DF, Arnold DL, Luyton PR, den Hollander JA: MR image-guided P-31 MR spectroscopy in the evaluation of brain tumor treatment. Radiology 165: 215–219, 1987

    Google Scholar 

  57. Arnold DL, Shoubridge EA, Feindel W, Villemure JG: Metabolic changes in cerebral gliomas within hours of treatment with intra-arterial BCNU demonstrated by phosphorus magnetic resonance spectroscopy. Can J Neurol Sci 14: 570–575, 1987

    Google Scholar 

  58. Levine SR, Welch KMA, Helpern JA, Bruce R, Ewing JR, Kensora T, Smith MB: Cerebral cortical phosphate metabolism and pH in patients with multiple subcortical infarcts: A controlled study with 31-phosphorus NMR spectroscopy. Proc 6th Ann Meeting Soc Magn Res Med, New York City, Vol 2: 1001, 1987

    Google Scholar 

  59. Roth K, Hubesch B, Naruse S, Gober J, Lawry T, Boska M, Matson G, Weiner M: Quantitation of metabolites in human brain using volume selected31P NMR. Proc 6th Ann Meeting Soc Magn Res Med, New York City, Vol 2: 608, 1987

    Google Scholar 

  60. Vermeulen J, Luyton PR, den Hollander JA: Determination of metabolite concentrations from localized31P NMR spectra of the human brain. Proc 6th Ann Meeting Soc Magn Res Med, New York City, Vol 1: 136, 1987

    Google Scholar 

  61. Luyton PR, den Hollander JA, van der Knaap MS, Valk J:In vivo 31P and1H NMR spectroscopy in patients with white matter disorders. Proc 7th Ann Meeting Soc Magn Res Med., San Francisco, CA, Vol 1: 257, 1988

    Google Scholar 

  62. Hubesch B, Sappey-Marinier D, Roth K, Sanuki E, Hodes JE, Matson GB, Weiner MW: Improved ISIS for studies of human brain and brain tumors. Proc 7th Ann Meeting Soc Magn Res Med, San Francisco, CA, Vol 1: 348, 1988

    Google Scholar 

  63. Cadoux-Hudson T, Blackledge MJ, Rajagopalan B, Taylor DJ, Radda GK: Measurement of phosphorus metabolites in patients with intracranial tumours. Proc 7th Ann Meeting Soc Magn Res Med, San Francisco, CA, Vol 2: 614, 1988

    Google Scholar 

  64. Mies G, Paschen W, Ebhardt G, Hossmann KA: Relationship between blood flow, glucose metabolism, protein synthesis, glucose and ATP content in experimentally-induced glioma (RG12.2) of rat brain. J Neuro-Oncol 9: 17–28, 1990

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaupel, P. Blood flow and metabolic microenvironment of brain tumors. J Neuro-Oncol 22, 261–267 (1994). https://doi.org/10.1007/BF01052931

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01052931

Key words

Navigation