Skip to main content
Log in

Dendritic action potentials of pyramidal tract neurons in the cat sensorimotor cortex

  • Published:
Neurophysiology Aims and scope

Abstract

The intracellular activity of pyramidal tract neurons was studied during electrical stimulation of ventrolateral and ventroposterolateral thalamic nuclei in acute experiments on cats immobilized by myorelaxants. Somatic action potentials were observed and spontaneous spikes were also produced by single and rhythmic stimulation of the thalamic nuclei at the rate of 8–14 Hz, by iontophoretic application of strychnine, and by intracellular depolarizing current pulses. These potentials had a relatively low and variable amplitude of 5–60 mV and are presumed to be dendritic action potentials. It is postulated that these variable potentials arise in the dendrites of pyramidal neurons with multiple zones generating such activity. No interaction was observed where somatic and dendritic action potentials occur simultaneously. The possible functional role of dendritic action potentials is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. G. S. Voronkov and V. I. Gusel'nikov, “Dendritic spike activity,” Nauchn. Dokl. Vyssh. Shkoly, Ser. Biol. Nauki, No. 8, 7–26 (1978).

  2. P. G. Kostyuk and O. A. Kryshtal', Mechanisms of Electrical Excitability of Nerve Cells [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  3. T. Sh. Labakhuya, M. G. Kokaya, and V. M. Okudzhava, “Dendritic spike activity in pyramidal neurons of the cerebral cortex,” Dokl. Acad. Nauk. SSSR,271, No. 5, 1271–1273 (1983).

    Google Scholar 

  4. P. Andersen, “Interhippocampal impulses. 2. Apical dendritic activation of CA neurons,” Acta Physiol. Scand.,48, No. 1, 178–208 (1960).

    PubMed  Google Scholar 

  5. S. Y. Assaf, V. Cruneli, and J. S. Kelly, “Small amplitude spikes recorded intracellularly from the rat dentate gyrus,” J. Physiol.,317, 35–41 (1981).

    Google Scholar 

  6. K. G. Bainbridge and J. J. Miller, “Calcium uptake and retention during long-term potentiation of neuronal activity in the rat hippocampal slice preparation,” Brain Res.,221, No. 2, 299–305, (1981).

    PubMed  Google Scholar 

  7. M. V. L. Bennet, “Electrical transmission. A functional analysis and comparison to chemical transmission,” in: Handbook of Physiology, Sect. 1, The Nervous System, S. R. Geiger, ed., Am. Physiol. Soc., Bethesda (1977), pp. 305–416.

    Google Scholar 

  8. G. Czeh, “The role of dendritic events in the inhibition of monosynaptic spikes in frog motoneurones,” Brain Res.,39, No. 4, 505–509 (1972).

    PubMed  Google Scholar 

  9. M. Deschenes, “Dendritic spikes induced in fast pyramidal tract neurons by thalamic stimulation,” Exp. Brain Res.,43, No. 3/4, 304–308 (1981).

    PubMed  Google Scholar 

  10. W. W. Douglas and P. S. Taraskevich, “Slowing effects of dopamine and calcium-channel blockers on frequency of sodium spikes in rat pars intermedia cells,” J. Physiol.,326, 201–211 (1982).

    PubMed  Google Scholar 

  11. J. C. Eccles, B. Libet, and R. R. Young, “The behaviour of chromatolyzed motoneurons studied by intracellular recording,” J. Physiol.,143, No. 1, 11–40 (1958).

    PubMed  Google Scholar 

  12. E. Fournier and F. Crepel, “Electrophysiological properties of dendate granule cells in mouse hippocampal slices maintainedin vitro,” Brain Res.,311, No. 1, 75–86 (1984).

    PubMed  Google Scholar 

  13. J. Garcia Ramos, “Sobre fisiologia de las dendritas corticales,” Bot. Estad. Med. Biol.,31, No. 3/4, 181–189 (1980).

    Google Scholar 

  14. J. R. Hoston and D. A. A. Prince, “A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons” J. Neurophysiol.,43, No. 3, 409–419 (1980).

    PubMed  Google Scholar 

  15. H. Jasper and C. Ajmone-Marsan, “Diencephalon of the cat” in: Electrical Stimulation of the Brain, Univ. Texas Press, Austin (1961), pp. 203–231.

    Google Scholar 

  16. M. Kuno and R. Llinas, “Enhancement of synaptic transmission by dendritic potentials in chromatolyzed motoneurons” J. Physiol.201, No. 4, 807–821 (1970).

    Google Scholar 

  17. W. M. Landau, “An analysis of the cortical response to antidromic pyramidal tract stimulation in the cat” Electroencephalogr. Clin. Neurophysiol.,8, No. 3, 445–456 (1956).

    Google Scholar 

  18. R. Llinas and C. Nickolson, “Electrophysiological properties of dendrites and somata in alligator Purkinje cells” J. Neurophysiol.,33, No. 4, 532–551 (1971).

    Google Scholar 

  19. R. Llinas and M. Sugimori, “Electrophysiological properties ofin vitro Purkinje cell dendrites in mammalian cerebellar slices” J. Physiol.,305, 197–213 (1980).

    PubMed  Google Scholar 

  20. K. Maekawa and D. P. Purpura, “Properties of spontaneous and evoked synaptic activities of thalamic ventrobasal neurons” J. Neurophysiol.,30, No. 27, 260–281 (1967).

    Google Scholar 

  21. B. A. MacVicar and F. E. Dudek, “Electrotonic coupling between pyramidal cells: a direct demonstration in rat hippocampal slices” Science,213, No. 4509, 782–785 (1981).

    PubMed  Google Scholar 

  22. K. Okamoto, H. Kimura, and G. Sakai, “Miniature synaptic potentials recorded intracellularly from Purkinje cell dendrites in guinea pig cerebellar slices” Brain Res.,311, No. 2, 281–282 (1984).

    PubMed  Google Scholar 

  23. J. H. Peacock and C. R. Walker, “Development of calcium action potentials in mouse hippocampal cell cultures” Dev. Brain Res.,8, No. 1, 39–52 (1983).

    Google Scholar 

  24. W. Precht, A. Richter, S. Ozawa, and N. Shimazu, “Intracellular study of frog's vestibular neurons in relation to the labyrinth and spinal cord” Exp. Brain Res.,19, No. 2, 377–393 (1974).

    PubMed  Google Scholar 

  25. R. Pumain, “Electrophysiological abnormalities in chronic epileptogenic foci in intracellular study” Brain Res.,219, No. 2, 445–450 (1981).

    PubMed  Google Scholar 

  26. D. A. Purpura, L. C. F. McMurty, and A. Malliani, “Evidence for dendritic origin of spikes without depolarizing prepotentials in hippocampal neurons during and after seizure” J. Neurophysiol.,29, No. 5, 954–979 (1966).

    PubMed  Google Scholar 

  27. D. P. Purpura, R. J. Shafer, and T. Scoff, “Properties of synaptic activities and spike potentials of neurons in immature neocortex” J. Neurophysiol.,28, No. 5, 925–942 (1965).

    PubMed  Google Scholar 

  28. W. Rall, G. M. Shepherd, T. S. Reese, and M. W. Brightman, “Dendro-dendritic synaptic pathway for inhibition in the olfactory bulb” Exp. Neurol.,14, No. 1, 44–56 (1966).

    PubMed  Google Scholar 

  29. F. Reinoso-Suarez, Topografischer Hirnatlas der Katze, Merck, Darmstadt (1961).

    Google Scholar 

  30. W. A. Spencer and E. R. Kandel, “Electrophysiology of hippocampal neurons. 4. Fast prepotentials” J. Neurophysiol.,24, No. 1, 272–285 (1961).

    Google Scholar 

  31. P. A. Schwartzkroin and D. A. Prince, “Cellular and field potential properties of epileptogenic hippocampal” Brain Res.,147, No. 1, 117–330 (1978).

    PubMed  Google Scholar 

  32. C. Stefanis and H. H. Jasper, “Intracellular microelectrode studies of antidromic responses in cortical pyramidal tract neurons” J. Neurophysiol.,27, No. 5, 828–854 (1964).

    PubMed  Google Scholar 

  33. J. T. Williams, R. A. North, S. A. Shefer, et al., “Membrane properties of rat locus coeruleus neurons” Neuroscience,13, No. 1, 137–156 (1984).

    PubMed  Google Scholar 

Download references

Authors

Additional information

I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 435–443, July–August, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labakhua, T.S., Kokaya, M.G. & Okudzhava, V.M. Dendritic action potentials of pyramidal tract neurons in the cat sensorimotor cortex. Neurophysiology 18, 307–314 (1986). https://doi.org/10.1007/BF01052798

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01052798

Keywords

Navigation