Skip to main content
Log in

Numerical analysis of a shock-wave solution of the Enskog equation obtained via a Monte Carlo method

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper a planar stationary shock-wave-like solution of the Enskog equation obtained via a Monte Carlo technique is studied; both the algorithm used to obtain the solution and the qualitative behavior of the macroscopic quantities are discussed in comparison with the corresponding solution of the Boltzmann equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Enskog,Kinetische Theorie (Svenska Akad., 63, 1921).

  2. S. Chapman and T. G. Cowling,The Mathematical Theory of Nonuniform Gases (Cambridge University Press, Cambridge, 1960).

    Google Scholar 

  3. P. Resibois and M. De Leener,Classical Kinetic Theory of Fluids (Wiley, London, 1977).

    Google Scholar 

  4. N. Bellomo, M. Lachowicz, J. Polewczac, and G. Toscani,Mathematical Topics in Nonlinear Kinetic Theory II: The Enskog Equation (World Scientific, Singapore, 1991).

    Google Scholar 

  5. L. Arkeryd and C. Cercignani, Global existence in L1 for the Enskog equation and convergence of the solutions to solutions of the Boltzmann equation,J. Stat. Phys. 59:845–867 (1990).

    Google Scholar 

  6. B. L. Holian, W. G. Hoover, B. Moran, and G. K. Straub, Shock-wave structure via nonequilibrium molecular dynamics and Navier-Stokes continuum mechanics,Phys. Rev. 22A:2798–2808 (1980).

    Google Scholar 

  7. H. M. Mott-Smith, The solution of the Boltzmann equation for a shock-wave,Phys. Rev. 82:885–900 (1951).

    Google Scholar 

  8. A. V. Orlov, Extension of the Mott-Smith method to denser gases,Phys. Fluids A 4(8):1856–1858 (1992).

    Google Scholar 

  9. A. Nordsieck and B. Hicks, Monte Carlo evaluation of the Boltzmann collision integral, inRarefied Gas Dynamics, Vol. 2, C. L. Brundin, ed. (Academic Press, New York, 1967, pp. 695–710.

    Google Scholar 

  10. F. G. Tcheremissine, Fast solutions of the Boltzmann equation, inRarefied Gas Dynamics, Vol. 1, A. E. Beylich, ed. (VCH, Aachen, 1991), pp. 273–284.

    Google Scholar 

  11. V. V. Aristov, Development of the regular method of the Boltzmann equation, inRarefied Gas Dynamics, Vol. 1, A. E. Beylich, ed. (VCH, Aachen, 1991), pp. 879–885.

    Google Scholar 

  12. G. A. Bird,Molecular Gas Dynamics (Clarendon Press, Oxford, 1976).

    Google Scholar 

  13. K. Nambu, Theoretical basis of the direct simulation Monte Carlo method, inRarefied Gas Dynamics, Vol. 2, V. Boffi and C. Cercignani, eds. (Teubner, Stuttgart, 1986), pp. 379–383.

    Google Scholar 

  14. K. Koura, Null collision technique in the direct simulation Monte-Carlo method,Phys. Fluids 29:3509–3511 (1986).

    Google Scholar 

  15. V. V. Aristov and F. G. Tcheremissine, The conservative splitting method for solving the Boltzmann equation,USSR Comp. Math. Phys. 20:208 (1980).

    Google Scholar 

  16. M. H. Kalos and P. A. Whitlock,Monte Carlo Methods (Wiley, New York, 1986).

    Google Scholar 

  17. A. Frezzotti and R. Pavani, Direct numerical solution of the Boltzmann equation for a relaxation problem of a binary mixture,Meccanica 24:139 (1989).

    Google Scholar 

  18. M. N. Kogan,Rarefied Gas Dynamics (Plenum Press, New York, 1969).

    Google Scholar 

  19. H. Van Beijeren and M. H. Ernst, The modified Enskog equation,Physica 68:437–456 (1973).

    Google Scholar 

  20. P. Resibois, H-theorem for the (modified) nonlinear Enskog equation,J. Stat. Phys. 19:593–609 (1978).

    Google Scholar 

  21. K. A. Fiscko and D. R. Chapman, Comparison of Burnett, Super-Burnett and Monte Carlo solutions for hypersonic shock structure, inRarefied Gas Dynamics, Vol. 1, E. P. Muntz, D. P. Weaver, and D. H. Campbell, eds. (AIAA, Pasadena, California, 1988), pp. 374–395.

    Google Scholar 

  22. E. Salomons and M. Mareschal, Usefulness of the Burnett description of strong shock waves,Phys. Rev. Lett. 69(2):269–272 (1992).

    Google Scholar 

  23. B. L. Holian, C. W. Patterson, M. Mareschal, and E. Salomons, Modeling shock waves in an ideal gas: Going beyond the Navier-Stokes level,Phys. Rev. E 47(1):R24–27 (1993).

    Google Scholar 

  24. W. Marques and G. M. Kremer, On Enskog's dense gas theory. II. The linearized Burnett equations for monatomic gases,Rev. Bras. Fis. 21(3):402–417 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frezzotti, A., Sgarra, C. Numerical analysis of a shock-wave solution of the Enskog equation obtained via a Monte Carlo method. J Stat Phys 73, 193–207 (1993). https://doi.org/10.1007/BF01052757

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01052757

Key words

Navigation