Skip to main content
Log in

Effect ofin vitro differentiation on proteoglycan structure in cultured human monocytes

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Parellel toin vitro differentiation of human monocytes into macrophage-like cells, the cells change their synthesis of glycosaminoglycans from chondroitin 4-sulfate to highly sulfated chondroitin sulfate, containing 4,6-disulfatedN-acetylgalactosamine units [Kolsetet al. (1983) Biochem J 210:661–67]. After exposure of monocyte cultures to [35S]sulfate for 24h either from the onset of cultivation, prior to differentiation, or from day 4, after differentiation,35S-macromolecules from medium and cell-layer were isolated and characterized. The cell-layer of day 5 cultures contained both proteoglycans and free polysaccharide chains, while the35S-macromolecules present in the cell-layer of day 1 cultures and in medium of both monocytes and macrophage-like cells were almost exclusively of proteoglycan nature. Proteoglycans produced by macrophage-like cells were of larger size than the monocyte proteoglycans, most likely due to an increased polysaccharide chain length. These proteoglycans, in contrast to the monocyte-derived species, also showed affinity for fibronectin at physiological ionic strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heinegård D, Paulsson M (1984) in Extracellular Matrix Biochemistry, eds. Piez KA, Reddi AH, Elsevier, New York, p 277–328.

    Google Scholar 

  2. Heinegård D, Paulsson M, Inerot S, Carlström C (1981) Biochem J 197:355–66.

    PubMed  Google Scholar 

  3. Heinegård D, Björne-Persson A, Cöster L, Franzén A, Gardell S, Malmström A, Paulsson M, Sandfalk R, Vogel K (1985) Biochem J 230:181–94.

    PubMed  Google Scholar 

  4. Bourdon MA, Oldberg Å, Piersbacher M, Ruoslahti E (1985) Proc Natl Acad Sci USA 82:1321–25.

    PubMed  Google Scholar 

  5. Robinson HC, Horner AA, Höök M, Ögren S, Lindahl U (1978) J Biol Chem 253:6689–93.

    Google Scholar 

  6. Cöster L, Carlstedt I, Malmström A (1979) Biochem J 183:669–81.

    PubMed  Google Scholar 

  7. Wight TN, Hascall VC (1983) J Cell Biol 96:167–76.

    PubMed  Google Scholar 

  8. Norling B, Glimelius B, Westermark B, Wasteson Å (1978) Biochem Biophys Res Commun 84:914–21.

    PubMed  Google Scholar 

  9. Calatroni A, Donnelly PV, Di Ferrante N (1969) J Clin Invest 48:332–43.

    PubMed  Google Scholar 

  10. Hata R, Ohkawa S, Nagai Y (1978) Biochim Biophys Acta 543:156–66.

    PubMed  Google Scholar 

  11. Huang SS, Huang JS, Deuel TF (1982) J Biol Chem 257:11546–50.

    PubMed  Google Scholar 

  12. Silvestri L, Baker JR, Rodén L, Stroud RM (1981) J Biol Chem 256:7383–87.

    PubMed  Google Scholar 

  13. Olsson I, Gardell S (1971) Biochim Biophys Acta 237:203–13.

    PubMed  Google Scholar 

  14. Hart GW (1982) Biochemistry 21:6088–96.

    PubMed  Google Scholar 

  15. Orenstein NS, Galli SJ, Dvorak AM, Silbert JE, Dvorak HF (1978) J Immunol 121:586–92.

    PubMed  Google Scholar 

  16. Levitt D, Ho PL (1983) J Cell Biol 97:351–58.

    PubMed  Google Scholar 

  17. Kolset SO, Kjellén L, Seljelid R, Lindahl U (1983) Biochem J 210:661–67.

    PubMed  Google Scholar 

  18. Johnson WD, Mei B, Cohn ZA (1977) J Exp Med 146:1613–26.

    PubMed  Google Scholar 

  19. Zuckerman SH, Ackerman SK, Douglas SD (1979) Immunology 38:401–11.

    PubMed  Google Scholar 

  20. Razin E, Stevens RL, Akiyama F, Schmid K, Austen KF (1982) J Biol Chem 257:7229–36.

    PubMed  Google Scholar 

  21. Kobayashi S, Oguri K, Yaoita E, Kobayashi K, Okayama M (1985) Biochim Biophys Acta 841:71–80.

    PubMed  Google Scholar 

  22. Kim JJ, Conrad HE (1982) J Biol Chem 257:1670–75.

    PubMed  Google Scholar 

  23. Thunberg L, Bäckström G, Lindahl U (1982) Carbohydr Res 100:393–410.

    PubMed  Google Scholar 

  24. Pertoft H, Johnsson A, Wärmegård B, Seljelid R (1980) J Immunol Methods 33:221–29.

    PubMed  Google Scholar 

  25. Lindahl U, Höök M (1978) Annu Rev Biochem 47:385–417.

    PubMed  Google Scholar 

  26. Wasteson Å (1971) J Chromatogr 59:87–97.

    PubMed  Google Scholar 

  27. Kolset SO, Seljelid R, Lindahl U (1984) Biochem J 219:793–99.

    PubMed  Google Scholar 

  28. Seldin DC, Austen KF, Stevens RL (1985) J Biol Chem 260:11131–39.

    PubMed  Google Scholar 

  29. Geczy CL (1983) in Lymphokines, Vol 8, ed. Wick W, Academic Press, New York, p 201–47.

    Google Scholar 

  30. Mosher DF (1975) J Biol Chem 250:6614–21.

    PubMed  Google Scholar 

  31. Frangou SA, Morris ER, Rees DA, Welsh EJ, Chavin SI (1983) Biopolymers 22:821–31.

    PubMed  Google Scholar 

  32. Johansson S, Höök M (1984) J Cell Biol 98:810–17.

    PubMed  Google Scholar 

  33. Hörmann H, Jelinic V (1980) Hoppe-Seylers Z Physiol Chem 361:397–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolset, S.O., Kjellén, L. Effect ofin vitro differentiation on proteoglycan structure in cultured human monocytes. Glycoconjugate J 3, 287–298 (1986). https://doi.org/10.1007/BF01051778

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01051778

Key words

Navigation