Skip to main content
Log in

Change in the thickness of an incompressible turbulent boundary layer in the presence of a longitudinal pressure gradient

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Dimensional analysis is used to find the change in the thickness of a turbulent boundary layer that develops under conditions of a strong positive or negative pressure gradient. Comparison of the expression for the thickness with the available experimental data makes it possible to determine the universal constant in the expression. An interpolation dependence is proposed, this holding for all not too rapidly varying velocity distributions on the outer boundary of the turbulent boundary layer. The results of calculations made with this dependence are compared with numerous experimental data on the change in the thickness of turbulent boundary layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. L. G. Loitsyanskii, Laminar Boundary Layers [in Russian], Fizmatgiz, Moscow (1962).

    Google Scholar 

  2. H. Schlichtung, Boundary Layer Theory, McGraw-Hill, New York (1968).

    Google Scholar 

  3. A. S. Monin and A. M. Yaglom, Statistical Hydrodynamics, Part 1 [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  4. I. K. Rotta, Turbulent Boundary Layers in Incompressible Fluids [in Russian], Sudostroenie, Leningrad (1967).

    Google Scholar 

  5. K. K. Fedyaevskii, A. S. Gineskii, and A. V. Kolesnikov, Calculation of Turbulent Boundary Layers in an Incompressible Fluid [in Russian], Sudostroenie, Leningrad (1973).

    Google Scholar 

  6. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, Oxford (1959).

    Google Scholar 

  7. “Computation of turbulent boundary layers,” Proc. 1968 AFOSR-IFP Stanford Conf., Vol. 1, 2, Stanford Univ. Press (1969).

  8. B. A. Kader and A. M. Yaglom, “Application of dimensional analysis to the calculation of decelerated turbulent boundary layers,” Dokl. Akad. Nauk SSSR, 233, No. I (1977).

  9. Th. von Kármán, Mechanische Ähnlichkeit und Turbulenz. Collected Works of Th. von Kármán, Vol. 2, Butterworths Sci. Publ., London (1956).

    Google Scholar 

  10. Present State of the Hydro- and Aerodynamics of a Viscous Fluid, Vol. 2 [Russian translations], Izd-vo Inostr. Lit., Moscow (1948).

  11. B. Hudimoto, “A method for the calculation of the turbulent boundary layer with pressure gradient,” Mem. Fac. Eng. Kyoto Univ.,27, No. 4 (1965).

  12. G. M. Bam-Zelikovich, “Calculation of boundary layer separation,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 12 (1954).

  13. J. Sternberg, “The transition from a turbulent to a laminar boundary layer,” U.S. Army Bal. Res. Lab. Aberdeen, Rep. 906 (1954).

  14. A. A. Sergienko and V. K. Gretsov, “Transition from a turbulent to a laminar boundary layer,” Dokl. Akad. Nauk SSSR,125, No. 4 (1959).

  15. A. E. Samuel and P. N. Joubert, “A boundary layer developing in an increasingly adverse pressure gradient,” J. Fluid Mech.,66, No. 3 (1974).

  16. R. L. Simpson, J. H. Strickland, and P. W. Barr, “Features of a separating turbulent boundary layer in the vicinity of separation,” J. Fluid Mech.,79, No. 3 (1977).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2. pp. 150–156, March–April, 1979.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kader, B.A. Change in the thickness of an incompressible turbulent boundary layer in the presence of a longitudinal pressure gradient. Fluid Dyn 14, 283–289 (1979). https://doi.org/10.1007/BF01051673

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01051673

Keywords

Navigation