Skip to main content
Log in

The high-density Z-pinch as a pulsed fusion neutron source for fusion nuclear technology and materials testing

  • Plasma-Based Neutron Sources
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The dense Z-pinch (DZP) is one of the earliest and simplest plasma heating and confinement schemes. Recent experimental advances based on plasma initiation from hair-like (10s μm in radius) solid hydrogen filaments have so far not encountered the usually devastating MHD instabilities that plagued early DZP experimenters. These encouraging results along with the debut of a number of proof-of principle, high-current (1–2 MA in 10–100 ns) experiments have prompted consideration of the DZP as a pulsed source of DT fusion neutrons of sufficient strength (S N ⩾ 1019 n/s) to provide uncollided neutron fluxes in excess ofI w = 5–10 MW/m2 over test volumes of 10–30 liters or greater. While this neutron source would be pulsed (100s ns pulse widths, 10–100 Hz pulse rate), giving flux time compressions in the range 105–106, its simplicity, near-term feasibility, low cost, high-Q operation, and relevance to fusion systems thatmay provide a pulsed commercial end-product, e.g., inertial confinement or the DZP itself, together create the impetus for preliminary consideration as a neutron source for fusion nuclear technology and materials testings. The results of a preliminary parametric systems study (focusing primarily on physics issues), conceptual design, and cost vs. performance analyses are presented. The DZP promises an inexpensive and efficient means to provide pulsed DT neutrons at an average rate in excess of 1019 n/s, with neutron currents Iw≲10 MW/m2 over volumes Vexp ⩾ 30 liter using single-pulse technologies that differ little from those being used in present-day experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. A. Anderson, W. R. Baker, S. A. Colgate, J. Ise, Jr., and R. V. Pyle (1958). Neutron production in linear deuterium pinches.Phys. Rev.,110(6), 1375.

    Google Scholar 

  2. J. Shiloh, A. Fisher, and E. Bar-Avraham (1979). “Interferometry of a gas-puff Z-pinch plasma.Appl. Phys. Lett.,35(5), 390.

    Google Scholar 

  3. N. R. Pereira, N. Rostoker, and J. S. Pearlman (1984). Z.-pinch instability with distributed current.J. Appl. Phys.,55(3), 704.

    Google Scholar 

  4. B. Kadomtsev (1966). Hydromagnetic stability of a plasma.Rev. Plasma Phys.,2, 153.

    Google Scholar 

  5. B. R. Suydam, Effect of the Gas Blanket on the Stability of the Dense Z-Pinch, Los Alamos National Laboratory Report LA-7809-MS, 1979.

  6. W. C. Hartman, Finite Larmor Radius Stabilized Z-Pinches, Lawrence Livermore National Laboratory Report UCID-17118, 1976.

  7. M. G. Haines (1981).Phil. Trans. Roy. Soc. Lond.,300A, 649.

    Google Scholar 

  8. D. W. Scudder (1985). Experiments on high-density Z pinches formed from solid deuterium fibers.Bull. Am. Phys. Soc.,30, 1408.

    Google Scholar 

  9. D. W. Scudder, R. Y. Dagazian, J. E. Hammel and P. R. Forman (1986). Solid deuterium fiber Z pinches: Experiment and theory.Bull. Am. Phys. Soc.,31, 1581.

    Google Scholar 

  10. J. D. Sethian, A. E. Robson, K. A. Gerber, and A. W. DeSilva (1987). Enhanced stability and neutron production in a dense Z-pinch plasma formed from a frozen deuterium fiber.Phys. Rev. Lett.,59(8), 892.

    Google Scholar 

  11. R. A. Nebel, H. R. Lewis, J. E. Hammel, D. W. Scudder, and P. Rosenau, 1-D transport calculations for Z-pinch fibers (to be published).

  12. R. A. Nebel, H. R. Lewis, I. R. Lindemuth, R. A. Nebel, and P. Rosenau (1987). Multidimensional MHD simulations of dense Z-pinch fibers.Bull. Am. Phys. Soc.,32(9), 1758.

    Google Scholar 

  13. A. H. Glasser (1989). Z-pinch and plasma focus: Report on the 1988 workshop on Z-pinch and plasma focus, Nice, France, October 10–11, 1988.Nucl. Fusion,29, 129.

    Google Scholar 

  14. N. R. Pereiva, J. Davis, and N. Rostoker (eds.), Proc. 2nd International Conf. on dense Z-pinches, Laguna Beach, California, April 26–28, 1989. AIP Conf. Proceedings,195 (1989).

  15. M. A. Abdou, Modeling, Analysis, and Experiment for Fusion Nuclear Technology, University of California at Los Angeles Report PPG-1021, January 1987.

  16. R. Hagenson, J. Hammel, R. Krakowski, R. Miller, R. Nebel, D. Scudder, and K. Werley (1987). The high-density Z-pinch (HDZP) as a fusion neutron source.Proc. 12th IEEE Symposium Fusion Engineering,2, 835.

    Google Scholar 

  17. R. W. Moir and R. S. Frost, eds., Study of a Magnetic Fusion Production Reactor, Lawrence Livermore National Laboratory Report UCRL-94408, 1980.

  18. C. W. Hartman, G. Carlson, M. Hoffman, R. Werner, and D. Y. Cheng (1977). A conceptual fusion reactor based on the high-plasma-density Z-pinch.Nucl. Fusion 17(5), 909.

    Google Scholar 

  19. R. L. Hagenson, A. S. Tai, R. A. Krakowski, and R. W. Moses (1981). The dense Z-pinch (DZP) as a fusion power plant: Preliminary scaling calculations and systems energy balance.Nucl. Fusion,21(11), 1351.

    Google Scholar 

  20. M. G. Haines and S. P. Walker (1987). Compact fusion reactors: The potential of the dense Z-pinch.Nucl. Energy.

  21. R. L. Hagenson, A. S. Tai, R. A. Krakowski, and R. W. Moses, The Dense Z-Pinch (DZP) as a Fusion Power Reactor: Preliminary Scaling Calculations and Systems Energy Balance, Los Alamos Scientific Laboratory Report LA-8186-MS, 1980.

  22. R. S. Pease (1957). Equilibrium characteristics of a pinched gas discharge cooled by bremsstrahlung radiation.Proc. Phys. Soc.,70B, 11.

    Google Scholar 

  23. S. Glasstone and R. H. Lovberg (1960).Controlled Thermonuclear Reactions (Van Nostrand Reinhold, New York), p. 226.

    Google Scholar 

  24. R. A. Krakowski, Fusion Burn Dynamics in Dense Z-Pinch (DZP), Los Alamos National Laboratory Report LA-11757-MS (December, 1989).

  25. R. L. Hagenson et al., Compact Reversed-Field Pinch Reactors (CRFPR): Preliminary Engineering Consideration, Los Alamos National Laboratory Report LA-10200-MS, 1984.

  26. R. H. Lovberg, Retention of DT Alpha Particles in the Dense Z-Pinch, Los Alamos National Laboratory, April 1989 (personal communication).

  27. I. R. Lindemuth, G. H. McCall, and R. A. Nebel (1989). Fiber ablation in the solid-deuterium Z pinch.Phys. Rev. Lett,62(3), 264.

    Google Scholar 

  28. J. C. Martin and I. D. Smith (1965).Pulsed-Power Notes (Atomic Weapons Research Estab., Aldermaston, U.K.).

    Google Scholar 

  29. C. G. Bathke, R. A. Krakowski, R. L. Miller, and K. A. Werley (1989). The Reversed-Field-Pinch (RFP) Fusion Neutron Source: A Conceptual Design.J. Fusion Energy 8(3–4), 249.

    Google Scholar 

  30. A. F. Robson (1989). “The Dense Z-Pinch as a Small Fusion Reactor,”AIP Conf. Proc. 195, 362.

    Google Scholar 

  31. Los Alamos Monte Carlo Group, MCNP-A General Monte Carlo Code for Neutron and Photon Transport, Los Alamos National Laboratory Report LA-6396-MS, revised, April, 1981.

  32. N. M. Ghoniem and G. L. Kulcinski (1980). A critical assessment of the effects of pulsed irradiation on the microstructure swelling, and creep of materials.Nucl. Tech. Fusion,2(2), 165.

    Google Scholar 

  33. E. P. Simonen, N. M. Ghoniem, and N. H. Packan, (1984). Pulsed flux effects on radiation damage.J. Nucl. Mater.,122/123, 391.

    Google Scholar 

  34. G. L. Kulcinski and M. E. Sawan (1985). Differences between neutron damage in inertial and magnetic confinement fusion test facilities.J. Nucl. Mater.,133/134, 52.

    Google Scholar 

  35. J. Shannon, 2nd IEEE Int. Pulsed Power Conf., Lubbock, Texas, June 12–14, 1979, p. 226.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by U.S. DOE.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krakowski, R.A., Sethian, J.D. & Hagenson, R.L. The high-density Z-pinch as a pulsed fusion neutron source for fusion nuclear technology and materials testing. J Fusion Energ 8, 269–286 (1989). https://doi.org/10.1007/BF01051654

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01051654

Key words

Navigation