Advertisement

Journal of Fusion Energy

, Volume 8, Issue 3–4, pp 201–227 | Cite as

A high-flux accelerator-based neutron source for fusion technology and materials testing

  • G. P. Lawrence
  • G. L. Varsamis
  • T. S. Bhatia
  • B. Blind
  • F. W. Guy
  • R. A. Krakowski
  • G. H. Neuschaefer
  • N. M. Schnurr
  • S. O. Schriber
  • T. P. Wangler
  • M. T. Wilson
Accelerator-Based Neutron Sources

Abstract

Advances in high-current linear-accelerator technology since the design of the Fusion Materials Irradiation Test (FMIT) Facility have increased the attractiveness of a deuteriumlithium neutron source for fusion materials and technology testing. This paper discusses the conceptual design of such a source that is aimed at meeting the near-term requirements of a high-flux high-energy International Fusion Materials Irradiation Facility (IFMIF). The concept employs multiple accelerator modules providing deuteron beams to two liquid-lithium jet targets oriented at right angles. This beam/target geometry provides much larger test volumes than can be attained with a single beam and target and produces significant regions of low neutron-flux gradient. A preliminary beam-dynamics design has been obtained for a 250-mA reference accelerator module. Neutron-flux levels and irradiation volumes were calculated for a neutron source incorporating two such modules, and interaction of the beam with the lithium jet was studied using a thermal-hydraulic computer simulation. Approximate cost estimates are provided for a range of beam currents and a possible facility staging sequence is suggested.

Key words

particle accelerator high-flux neutron source deuterium-lithium reactions fusion materials testing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Materials for Fusion, A Report to the Fusion Power Coordinating Committee of the International Energy Agency by the Senior Advisory Panel (S. Amelinckx, Chairman), December 1986.Google Scholar
  2. 2.
    International Fusion-Materials-Irradiation-Facility (IFMIF) Workshop for the International Energy Agency, San Diego, California, February 14–17, 1989.Google Scholar
  3. 3.
    G. P. Lawrence, T. P. Wangler, S. O. Schriber, E. L. Kemp, M. T. Wilson, T. S. Bhatia, G. H. Neuschaefer, F. W. Guy, and D. D. Armstrong (1989). A high performance D-lithium neutron source for fusion technology testing: Accelerator driver design.Fusion Tech.,15(2), 289.Google Scholar
  4. 4.
    F. M. Mann (1989). IFMIF, An accelerator-based neutron source for fusion components irradiation testing.Fusion Tech.,15(2), 295.Google Scholar
  5. 5.
    G. P. Lawrence, T. S. Bhatia, B. Blind, F. W. Guy, R. A. Krakowski, G. H. Neuschaefer, N. M. Schnurr, S. O. Schriber, G. L. Varsamis, T. P. Wangler, and M. T. Wilson, High-Performance Deuterium-Lithium Neutron Source for Fusion Materials and Technology Testing, Proc. 1989 Particle Accelerator Conf., Chicago, Illinois, March 20–23, 1989 (to be published).Google Scholar
  6. 6.
    A. L. Trego, J. W. Hagan, E. K. Opperman, and R. J. Burke (1983). Fusion materials irradiation test facility-A facility for fusion materials qualification (Part 2).Nucl. Tech. Fusion,4(2), 695.Google Scholar
  7. 7.
    G. H. Gillespie, Y. Y. Kuo, D. Keefe, and T. P. Wangler, eds., High-Current, High-Brightness and High-Duty Factor Ion Injectors, La Jolla Institute, 1985, AIP Conf. Proc., 1986, p. 139.Google Scholar
  8. 8.
    T. P. Wangler, Physics Design of Linear Accelerators for Intense Ion Beams, Proc. 1988 Linear Accelerator Conf., Williamsburg, Virginia, October 1988 (to be published).Google Scholar
  9. 9.
    R. Serber (1947). The production of high energy neutrons by stripping.Phys. Rev.,72(11), 1008–1016.Google Scholar
  10. 10.
    M. R. Shubaly (1979). High current DC ion source development at CRNL.IEEE Trans. Nucl. Sci., NS-26(3), 3065.Google Scholar
  11. 11.
    A. J. Jason, B. Blind, and E. M. Svaton, Uniform Ribbon-Beam Generation for Accelerator Production of Tritium, Proc. 1988 Linear Accelerator Conf., Williamsburg, Virginia, October 1988 (to be published).Google Scholar
  12. 12.
    F. M. Mann, F. Schmittroth, and L. L. Carter, Neutrons from D + Li and the FMIT Irradiation Environment, Hanford Engineering Development Laboratory Report HEDL-TC-1459, November 1981.Google Scholar
  13. 13.
    H. A. Bethe (1933). Quantenmechanik der Ein- und Zwei-Elektronenprobleme. InHandbuch der Physik (Vol. 24, No. 1), H. Geiger and K. Scheel, eds. (Springer-Verlag, Berlin), p. 491.Google Scholar
  14. 14.
    U. Fano (1963). Penetration of protons, alpha particles, and mesons.Annu. Rev. Nucl. Sci.,13, 1–66.Google Scholar
  15. 15.
    J. F. Ziegler, J. P. Biersack, and U. Littmark (1985).The Stopping and Range of Ions in Solids (Vol. 1) (Pergamon Press, Oxford).Google Scholar
  16. 16.
    J. A. Hassberger, Preliminary Assessment of Interactions between the FMIT Deuteron Beam and Liquid Lithium Target, Hanford Engineering Development Laboratory Report, HEDL-TME 82-28, March 1983.Google Scholar
  17. 17.
    S. V. Patankar and D. B. Spalding (1970).Heat and Mass Transfer in Boundary Layers, A General Calculation Procedure (2nd Ed.) (Intertext Books, London).Google Scholar
  18. 18.
    D. Rockwell, S. Johnson, and J. C. Chen (1976). Thermo-Fluid Analysis of a Deuteron-Lithium Target, TS-761 (Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania).Google Scholar
  19. 19.
    M. Abdou et al., Blanket Comparison and Selection Study, Interim Report, ANL/FPP/TM-177, Argonne National Laboratory, September, 1983.Google Scholar
  20. 20.
    C. B. Bathke, R. A. Krakowski, R. L. Miller, and K. A. Werley (1989). The reversed-field pinch (RFP) fusion-neutron source: A conceptual design.J. Fusion Energy,8(3).Google Scholar
  21. 21.
    R. A. Krakowski, J. D. Sethian, and R. L. Hagenson, The high-density Z-pinch as a pulsed fusion neutron source for fusion nuclear technology and materials testing.J. Fusion Energy,8(3).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • G. P. Lawrence
    • 1
  • G. L. Varsamis
    • 1
  • T. S. Bhatia
    • 1
  • B. Blind
    • 1
  • F. W. Guy
    • 1
  • R. A. Krakowski
    • 1
  • G. H. Neuschaefer
    • 1
  • N. M. Schnurr
    • 1
  • S. O. Schriber
    • 1
  • T. P. Wangler
    • 1
  • M. T. Wilson
    • 1
  1. 1.Los Alamos National LaboratoryLos Alamos

Personalised recommendations