Skip to main content
Log in

Fusion neutron test facility requirements for interactive effects in structural and high-heat-flux components

  • Overviews/Perspective
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

A relevant design data base is needed for structural components in near-term and commercial fusion devices. A high-flux, high-fluence fusion neutron test facility is required for testing the failure mechanisms and lifetime-limiting features for first wall, blanket, and high-heat-flux components. We describe here the key aspects of the fusion environment which influence the response of structural and high-heat-flux components. In addition to test capabilities for fundamental radiation-effects phenomena, e.g., swelling, creep, embrittlement, and hardening, it is shown that the facility must provide an adequate range of conditions for accelerated tests to study the limitations on component lifetime due to the interaction between such fundamental phenomena. In high-heat-flux components, testing of the failure mechanisms of duplex structures is shown to require maintenance of an appropriate temperature gradient in the 14-MeV neutron field. Thermal stresses are shown to result in component failure, particularly when the degradation in the thermal conductivity and mechanical properties by irradiation are considered. Several factors are discussed for assessment of the failure modes of the first wall and blanket structures. These are displacement-damage dose and dose rate, the amount of helium gas generated, the magnitude of irradiation and thermal creep, prototypical temperature and temperature-gradient distributions, module geometry, and external mechanical constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Smith (1981).J. Nucl. Mater.,103/104, 19.

    Google Scholar 

  2. R. E. Nygren (1981).J. Nucl. Mater.,103/104, 31.

    Google Scholar 

  3. R. Behrisch (1979).J. Nucl. Mater.,85/86, 1047.

    Google Scholar 

  4. R. F. Mattas, D. L. Smith, and M. A. Abdou (1984).J. Nucl. Mater.,122/123, 66.

    Google Scholar 

  5. M. C. Carroll (1986).Technical Assessment of Plasma-Interactive Options for Claddings and Attachments for Steady State (University of California Los Angeles Report No. UCLA-ENG-8726/PPG-1085).

  6. R. W. Conn (1981).J. Nucl. Mater.,103/104, 7.

    Google Scholar 

  7. W. B. Gauster, J. A. Koski, and R. D. Watson (1984).J. Nucl. Mater.,122/123, 80.

    Google Scholar 

  8. J. B. Whitley (1985).J. Nucl. Mater.,133/134, 39.

    Google Scholar 

  9. R. C. Isler (1984).Nucl. Fusion,24, 1599.

    Google Scholar 

  10. S. Ishino, P. Shiller, and A. Rowcliffe (1989).J. Fusion Energy,8(3), 147.

    Google Scholar 

  11. G. L. Kulcinski, R. Lott, P. Singer, and D. Brown (1974).Nucl. Technol.,22, 20.

    Google Scholar 

  12. A. D. Adegbulugbe and J. E. Meyer (1981).J. Nucl. Mater. 103/104, 161.

    Google Scholar 

  13. S. D. Harkness and B. A. Cramer (1979).J. Nucl. Mater.,85/86, 135.

    Google Scholar 

  14. J. R. Power and M. Reich (1980).Nucl. Engr. Des.,58, 247.

    Google Scholar 

  15. M. J. Delaney, B. A. Cramer, and C. A. Trachsel (1979).J. Nucl. Mater.,85/86, 165.

    Google Scholar 

  16. W. Daenner and J. Raeder (1979).J. Nucl. Mater.,85/86, 147.

    Google Scholar 

  17. W. Daenner and J. Raeder (1981).J. Nucl. Mater.,103/104, 121.

    Google Scholar 

  18. R. D. Watson (1981). The Impact of Inelastic Deformation Radiation Effects and Fatigue Damage on Fusion Reactor First Wall Lifetime, Ph.D. thesis (University of Wisconsin, Madison) December 1981.

    Google Scholar 

  19. R. F. Mattas (1980).Fusion Component Lifetime Analysis (Argonne National Laboratory Report No. ANL/FPP/TF160).

  20. B. G. Logan et al. (1983).Mirror Advanced Reactor Study Interim Design Report (Lawrence Livermore National Laboratory Report No. UCRL-5333).

  21. The Titan Reversed-Field Pinch Fusion Reactor Study, Final Report (1989). (University of California Los Angeles Report No. UCLA-PPG-1200.

  22. R. J. Amodeo and N. M. Ghoniem (1985).Nucl. Engr. Des./Fusion,2, 97.

    Google Scholar 

  23. J. P. Blanchard and N. M. Ghoniem (1984).J. Nucl. Mater.,122(2), 101.

    Google Scholar 

  24. M. F. Smith and J. B. Whitley (1986). InPhysics of Plasma-Wall Interactions in Controlled Fusion, D. E. Post and R. Behrisch, eds. NATO ASI series, series B, Physics; V. 131 (Plenum Press, New York), pp. 539–605.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghoniem, N.M., Whitley, J.B. Fusion neutron test facility requirements for interactive effects in structural and high-heat-flux components. J Fusion Energ 8, 157–167 (1989). https://doi.org/10.1007/BF01051646

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01051646

Key words

Navigation