Skip to main content
Log in

SiO(g) formation from SiC in mixed oxidizing-reducing gases

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The formation of SiO(g) from SiC by either active oxidation or an oxidation-reduction process is discussed. The Wagner criterion for the transition from active to passive oxidation is generalized for any oxidant. Kinetic modeling of both active oxidation and oxidation-reduction is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α:

\((MW_{O_2 } - MW_C )/MW_{SiO_2 } \)

β:

\(MW_{O_2 } /MW_{SiO_2 } \)

γ:

MW SiC/MW Si

δCO :

CO(g) boundary layer thickness

δox :

gaseous-oxidant, boundary layer thickness

ζ:

stoichiometric factor from Eqs. (2)–(4), # of CO produced/# of oxidant (on oxygen atom basis)

ν:

gas viscosity

ϱ:

concentration of diffusing gas species in boundary layer

ϱ′:

concentration of major gas species in boundary layer

ϱoxide :

density of SiO2

D :

diffusion coefficient of diffusing species in gas-boundary layer

D CO :

diffusion coefficient of CO(g)

D ox :

gas diffusion coefficient of oxidant

J :

flux, rate of weight loss limited by diffusion in gas-boundary layer

J CO :

flux of CO(g)

J ox :

flux of gaseous oxidant

K g :

linear oxide growth constant, weight/(length2 time)

k g :

linear oxide growth constant, length/time

k l :

linear volatilization constant for SiO2,k lo+k ls, weight/(length2 time)

k lo :

linear volatilization constant for oxygen from SiO2, weight/(length2 time)

k ls :

linear volatilization constant for silicon from SiO2, weight/(length2 time)

k l :

linear volatilization constant for SiO2, length/time

k p :

parabolic oxide growth constant, weight2/(length4 time)

k p :

parabolic oxide growth constant, length2/time

L :

sample length parallel to gas flow direction

M/A)1 :

specific weight change due to oxygen gain and associated carbon loss in paralinear oxidation

M/A)1L :

limiting value of weight change due to oxygen gain and associated carbon loss in paralinear oxidation

M/A)2 :

specific weight change due to silicon loss and associated carbon loss in paralinear oxidation

MW C :

molecular weight of carbon

\(MW_{O_2 } \) :

molecular weight of O2

MW Si :

molecular weight of silicon

MW SiC :

molecular weight of silicon carbide

\(MW_{SiO_2 } \) :

molecular weight of silica

n :

number of oxygen atoms per oxidant molecule

P eqCO :

eqiilibrium CO(g) pressure

P gCO :

CO(g) pressure outside of boundary layer

P iCO :

CO(g) pressure at SiC-gas interface

P gox :

oxidant gas pressure outside of boundary layer

P iox :

oxidant gas pressure at SiC-gas interface

R :

gas constant

t :

time

T :

absolute temperature

v :

linear gas velocity

x :

oxide thickness

x L :

limiting oxide thickness achieved in paralinear oxidation

x t :

oxide thickness at which transition from linear to parabolic growth occurs

References

  1. N. S. Jacobson,J. Am. Ceram. 76, 3–28 (1993).

    Google Scholar 

  2. D. P. Butt, R. E. Tressler, and C. G. Pantano,Ind. Heat. 58, 44–48 (1991).

    Google Scholar 

  3. H.-E. Kim and D. W. Readey, inSilicon Carbide '87, J. D. Cawley and C. E. Semler (eds.) (American Ceramic Society, Westerville, OH, 1987), pp. 301–312.

    Google Scholar 

  4. T. Narushima, T. Goto, Y. Yokoyama, Y. Iguchi, and T. Hirai,J. Am. Ceram. Soc. 76, 2521–2524 (1993).

    Google Scholar 

  5. J. E. Antill and J. B. Warburton,Corros. Sci. 11, 337–342 (1971).

    Google Scholar 

  6. C. Wagner,J. Appl. Phys. 29, 1295–1297 (1958).

    Google Scholar 

  7. S. C. Singhal,Ceram. Int. 2, 123–130 (1976).

    Google Scholar 

  8. E. A. Gulbransen,Oxid. Met. 4, 181–201 (1972).

    Google Scholar 

  9. T. Narushima, T. Goto, and T. Hirai, inCorrosion and Coating of Advanced Materials, MRS Intl. Mtg. on Adv. Mats. Vol. 4 (Materials Research Society, 1989).

  10. T. Narushima, T. Goto, Y. Iguchi, and T. Hirai,J. Am. Ceram. Soc. 74, 2583–2586 (1991).

    Google Scholar 

  11. N. S. Jacobson and R. A. Rapp, NASA Technical Memorandum 106793, 1995.

  12. N. S. Jacobson, A. J. Eckel, and A. K. Misra,J. Am. Ceram. Soc. 73, 2330–2332 (1990).

    Google Scholar 

  13. W. M. Kays and M. E. Crawford,Convective Heat and Mass Transfer, 2nd ed. (McGraw Hill, New York, 1980), p. 139.

    Google Scholar 

  14. W. L. Vaughn and H. G. Maahs,J. Am. Ceram. Soc. 73, 1540–1543 (1990).

    Google Scholar 

  15. C. S. Tedmon, Jr.,J. Electrochem. Soc. 113, 766–768 (1967).

    Google Scholar 

  16. C. A. Barrett and A. F. Presler, NASA Technical Note D-8132 (Washington, DC, 1976).

  17. M. J. Maloney and M. J. McNallan,Met. Trans. 16B, 751–761 (1985).

    Google Scholar 

  18. J. T. Porter, private communication.

  19. J. E. Antill and J. B. Warburton, in North Atlantic Treaty Organization, Advisory Group for Aerospace Research and Development, Conference Proceedings No. 52,Reactions between Gases and Solids, 1970.

  20. W. Bremen, A. Naoumidis, and H. Nickel,J. Nucl. Mater. 71, 56–64 (1977).

    Google Scholar 

  21. E. J. Opila,J. Am. Ceram. Soc. 77, 730–736 (1994).

    Google Scholar 

  22. J. A. Costello and R. E. Tressler,J. Am. Ceram. Soc. 69, 674–681 (1986).

    Google Scholar 

  23. D. S. Fox, inCeramic Engineering and Science Proceedings, Vol. 13 (The American Ceramic Society, Westerville, OH, 1992).

    Google Scholar 

  24. T. Narushima, T. Goto, and T. Hirai,J. Am. Ceram. Soc. 72, 1386–1390 (1989).

    Google Scholar 

  25. B. E. Deal and A. S. Grove,J. Appl. Phys. 36, 3770–3778 (1965).

    Google Scholar 

  26. C. E. Ramberg, M.S. thesis (Pennsylvania State University, Department of Materials Science and Engineering, 1992).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Opila, E.J., Jacobson, N.S. SiO(g) formation from SiC in mixed oxidizing-reducing gases. Oxid Met 44, 527–544 (1995). https://doi.org/10.1007/BF01051042

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01051042

Key Words

Navigation