Skip to main content
Log in

Rayleigh instability of a charged viscous drop

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. J. P. Woosley, R. J. Turnbull, and K. Kim, “Field injection electrostatic spraying of liquid hydrogen,” J. Appl. Phys.,64, 4278 (1988).

    Google Scholar 

  2. J. Van de Walle and P. Joyes, “Role of fragmentation processes in the liquid metal ion source production of aggregates,” Z. Phys. D12, 221 (1989).

    Google Scholar 

  3. A. I. Grigor'ev, Yu. V. Syshchikov, and S. O. Shiryaeva, “Electrostatic monodispersion of liquids as a method of obtaining two-phase systems,” Zh. Prikl. Khim.,62, 2020 (1989).

    Google Scholar 

  4. A. I. Grigor'ev and S. O. Shiryaeva, “Mechanism of development of a stepped leader and intracloud forking of linear lightening,” Zh. Tekh. Fiz.,59, 6 (1989).

    Google Scholar 

  5. A. I. Grigor'ev and S. O. Shiryaeva, “Parameters of electrostatic atomization,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 5 (1988).

    Google Scholar 

  6. H. Lamb, Hydrodynamics, Cambridge (1932).

  7. A. I. Grigor'ev and A. É. Lazaryants, “Parametric instability of a conducting liquid drop with respect to its stochastically time-varying self-charge,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 52 (1990).

    Google Scholar 

  8. S. N. Panasov, “Capillary oscillation spectrum of a dielectric drop with a uniform volume charge distribution,” in: Collection of Scientific Papers. Physicotechnical Problems of Monodisperse Systems, No. 185 [in Russian], MÉI, Moscow (1988), p. 70.

    Google Scholar 

  9. R. Rayleigh, “On the equilibrium of liquid conducting masses charged with electricity,” Philos. Mag.,14, 184 (1882).

    Google Scholar 

  10. A. I. Grigor'ev, “Mechanism of instability of a charged conducting drop,” Zh. Tekh. Fiz.,55, 1272 (1985).

    Google Scholar 

  11. A. I. Grigor'ev and O. A. Sinkevich, “Mechanism of instability of a liquid drop in an electric field,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 10 (1986).

    Google Scholar 

  12. G. Taylor, “Disintegration of water drops in an electric field,” Proc. R. Soc. London, Ser. A:280, 383 (1964).

    Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, Continuum Electrodynamics [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  14. L. N. Gall', N. V. Krasnov, Yu. S. Kusner, et al., “Electrohydrodynamic introduction of liquids into a mass spectrometer,” Zh. Tekh. Fiz.,54, 1559 (1984).

    Google Scholar 

  15. N. B. Zolotoi, G. V. Karpov, and V. E. Skurat, “Mechanisms of formation of ions and ion clusters from charged drops,” Zh. Tekh. Fiz.,58, 315 (1988).

    Google Scholar 

  16. A. I. Grigor'ev and S. O. Shiryaeva, “Physical principles of the electrohydrodynamic method of obtaining ion-cluster-drop beams,” in: Scientific Instrument Making. Physics of Analytical Instruments [in Russian], Nauka, Leningrad (1989), p. 28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 11–17, September–October, 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigor'ev, A.I., Lazaryants, A.É. Rayleigh instability of a charged viscous drop. Fluid Dyn 26, 645–651 (1991). https://doi.org/10.1007/BF01050982

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01050982

Keywords

Navigation