Skip to main content
Log in

Detection of gangliosides by direct binding ofLimax flavus agglutinin to thin layer chromotograms

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

A simple and sensitive method for detecting gangliosides on TLC plates is described. Gangliosides are extracted by phase partition in chloroform/methanol, developed on TLC plates in chloroform/methanol/0.25% aqueous KCl (5/4/1 by vol) and identified by binding of125I-labelled, sialic acid-specificLimax flavus agglutinin (LFA) autoradiography and scanning densitometry. The detection limit of the method is below 1 ng (0.5 pmol) for GM3, GM1 and GT1b, and below 0.3 ng (0.2 pmol) for GM2 and GD1a. Binding of125I-LFA is not inhibited by 106-fold molar excess concentrations ofN-acetylneuraminic acid or lactose but is decreased in a dose-dependent manner by eitherN-acetylneuraminyllactose or unlabelled lectin. Gangliosides were not detected after their treatment byClostridium perfringens sialidase in the presence of taurocholic acid. Ten gangliosides were detected in human brain and seven in normal human serum. Extracts from 0.2 mg of brain and 20 μl of serum were sufficient for the detection of major gangliosides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LFA:

Limax flavus agglutinin

ELLA:

Enzyme Linked Lectin Assay

PIM:

Poly(isobutyl methacrylate)

PVP:

Polyvinylpyrrolidone mol.wt. 40,000

PBS:

Phosphate buffered saline

BSA:

Bovine serum albumin

References

  1. Svennerholm L (1957) Biochim Biophys Acta 24:604–11.

    Google Scholar 

  2. Aminoff D (1961) Biochem J 81:384–92.

    Google Scholar 

  3. Magnani JL, Smith DF, Ginsburg V (1980) Anal Biochem 109:399–402.

    Google Scholar 

  4. Magnani JL, Brockhaus M, Smith DF, Ginsburg V (1982) Methods Enzymol 83:235–41.

    Google Scholar 

  5. Saito M, Kasai N, Yu RK (1985) Anal Biochem 148:54–58.

    Google Scholar 

  6. Magnani JL, Brockhaus M, Smith DF, Ginsburg V, Blaszczyk M, Mitchell KF, Steplewski Z, Koprowski H (1981) Science 212:55–56.

    Google Scholar 

  7. Brockhaus M, Magnani JL, Blaszczyk M, Steplewski Z, Koprowski H, Karlsson KA Larson G, Ginsburg V (1981) J Biol Chem 256:13223–25.

    Google Scholar 

  8. Smith DF (1983) Biochem Biophys Res Commun 115:360–67.

    Google Scholar 

  9. Hansson GC, Karlsson KA, Larson G, Strömberg N, Thurin J (1985) Anal Biochem 146:158–63.

    Google Scholar 

  10. Swank-Hill P, Needham LK, Schnaar RL (1987) Anal Biochem 163:23–25.

    Google Scholar 

  11. Molin K, Fredman P, Svennerholm L (1986) FEBS Lett 205:51–52.

    Google Scholar 

  12. McCoy JP, Varani J, Goldstein IJ (1983) Anal Biochem 130:437–44.

    Google Scholar 

  13. Holmgren J, Elwing H, Fredman P, Svennerholm, L (1980) Eur J Biochem 106:301–79.

    Google Scholar 

  14. Goldstein IJ, Poretz RD (1986) in The Lectins, eds. Liener IE, Sharon N, Goldstein IJ, Academic Press, Orlando, p 209–14.

    Google Scholar 

  15. Monsigny M, Roche AC, Sene C, Maget-Dona R, Delmontte FM (1980) Eur J Biochem 104:147–53.

    Google Scholar 

  16. Yen SE, Mansfield JM, Wallace JH (1980) Int Arch Allergy Appl Immunol 61:32–39.

    Google Scholar 

  17. Mohan S, Dorai DT, Srimal S, Buchhawat BK (1982) Biochem J 203:253–62.

    Google Scholar 

  18. Miller RL (1982) J Invertebr Pathol 39:210–14.

    Google Scholar 

  19. Miller RL, Collawn JF, Fish WW (1982) J Biol Chem 257:7574–80.

    Google Scholar 

  20. Hunter WM (1967) in Handbook of Experimental Immunology, ed. Weir DK, Davis, Philadelphia, p 608–42.

    Google Scholar 

  21. Svennerholm L, Fredman P (1980) Biochim Biophys Acta 617:97–109.

    Google Scholar 

  22. Colman PG, Nayak RC, Campbell IL, Eisenbarth GS (1988) Diabetes 37:645–52.

    Google Scholar 

  23. Schauer R (1978) Methods Enzymol 50:64–89.

    Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–75.

    Google Scholar 

  25. Wenger DA, Wardall S (1973) Neurochem 20:607–12.

    Google Scholar 

  26. Tettamanti G, Bonali F, Marchesini S, Zambotti V (1973) Biochim Biophys Acta 296:160–70.

    Google Scholar 

  27. Tomasi M, Roda C, Ausiello C, D'Agnolo G, Venerando B, Ghidoni R, Sonnini S, Tettamanti G (1980) Eur J Biochem 111:315–24.

    Google Scholar 

  28. Brockhaus M (1985) in Immunological Methods Vol III, eds. Lefkovits I, Pernis B, Academic Press, Orlando, p 133–45.

    Google Scholar 

  29. Tettamanti G, Masserini M (1987) in Biomembrane and Receptor Mechanisms, Fidia Research Series Vol 7, eds. Bertoli E, Chapman D, Cambria A, Scapagnini U, Liviana Press, Padova, p 235.

    Google Scholar 

  30. Suzuki K (1965) J Neurochem 12:629–38.

    Google Scholar 

  31. Kracun I, Rösner H, Cosovic C, Stavljenic A (1984) J Neurochem 43:979–89.

    Google Scholar 

  32. Urban PF, Harth S, Freysz L, Dreyfus H (1984) Adv Exp Med Biol 174:104–10.

    Google Scholar 

  33. Tai T, Kawashima J, Tada N, Ikegami S (1988) Biochim Biophys Acta 958:134–38.

    Google Scholar 

  34. Kundu SK, Diego I, Osovitz S, Marcus DM (1985) Arch Biochem Biophys 238:388–400.

    Google Scholar 

  35. Ladisch S, Gillard B (1987) Methods Enzymol 138:300–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kielczyski, W., Harrison, L.C. Detection of gangliosides by direct binding ofLimax flavus agglutinin to thin layer chromotograms. Glycoconjugate J 7, 75–84 (1990). https://doi.org/10.1007/BF01050404

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01050404

Key words

Navigation