Skip to main content
Log in

Simple forms of determining equation of concentrated polymer solutions and melts as a consequence of molecular viscoelasticity theory

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. C. F. Curtiss and R, B. Bird, “A kinetic theory for polymer melts,” J. Chem. Phys.,74, 2016 (1981).

    Google Scholar 

  2. A. S. Lodge, J. D. Schieber, and R. B. Bird, “The Weissenberg effect at finite rod-rotation speeds,” J. Chem. Phys.,88, 4001 (1988).

    Google Scholar 

  3. P. G. de Gennes, “Reptation of a polymer chain in the presence of fixed obstacles,” J. Chem. Phys.,55, 572 (1971).

    Google Scholar 

  4. M. Doi and S. F. Edwards, “Dynamics of concentrated polymer systems,” J. Chem. Soc. Faraday Trans. II,74, 1789 (1978).

    Google Scholar 

  5. V. S. Volkov and G. V. Vinogradov, “Relaxational interactions and viscoelasticity of polymer melts. Pt. I. Model development,” J. Non-Newton. Fluid Mech.,18, 163 (1985).

    Google Scholar 

  6. V. S. Volkov and G. V. Vinogradov, “Relaxational interactions and viscoelasticity of polymer melts. Pt. II. Rheological properties in shear and elongational flows,” J. Non-Newton. Fluid Mech.,25, 261 (1987).

    Google Scholar 

  7. V. L. Grebnev and V. N. Pokrovskii, “Viscoelasticity of linear polymers: second-order effects,” Vysokomol. Soedin. Ser. B:29, 704 (1987).

    Google Scholar 

  8. V. N. Pokrovskii and Yu. K. Kokorin, “Theory of viscoelasticity of dilute mixtures of linear polymers,” Vysokomol. Soedin., Ser. B:26, 573 (1984).

    Google Scholar 

  9. V. N. Pokrovskii and G. V. Pyshnograi, “Nonlinear effects in the dynamics of concentrated polymer solutions and melts,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 88 (1990).

    Google Scholar 

  10. W. W. Graessley, “The entanglement concept in polymer rheology,” Adv. Polym. Sci.,16, 1 (1974).

    Google Scholar 

  11. V. N. Pokrovskii and N. P. Kruchinin, “Nonlinear effects in the flow of linear polymers,” Vysokomol. Doedin., Ser. B:22, 335 (1980).

    Google Scholar 

  12. Yu. A. Altukhov, A. N. Kekalov, V. N. Pokrovskii, et al., “Description of pulsating flow of polymer solutions that exhibit viscoelastic properties,” in: Structure of Hydrodynamic Flows (induced Flow, Thermal Convection) [Russian collection] (eds. E. M. Khabakhpasheva and V. S. Berdnikov), Institute of Thermophysics, Siberian Branch, USSR Academy of Sciences, Novosibirsk (1986), p. 5.

    Google Scholar 

  13. S. de Groot and P. Mazur, Nonequilibrium Thermodynamics, North-Holland, Amsterdam (1962).

    Google Scholar 

  14. A. I. Leonov, “Description of rheological behavior of viscoelastic media at large elastic deformations,” Preprint No. 34 [in Russian], Institute of Problems of Mechanics, USSR Academy of Sciences, Moscow (1973).

    Google Scholar 

  15. A. N. Prokunin, “On the description of viscoelastic flows of polymer fluids,” Rheol. Acta,28, 38 (1989).

    Google Scholar 

  16. J. G. Oldroyd, “On the formulation of rheological equations of state,” Proc. R. Soc. London, Ser. A:200, 523 (1950).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 71–77, January–February, 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokrovskii, V.N., Pyshnograi, G.V. Simple forms of determining equation of concentrated polymer solutions and melts as a consequence of molecular viscoelasticity theory. Fluid Dyn 26, 58–64 (1991). https://doi.org/10.1007/BF01050113

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01050113

Keywords

Navigation