Skip to main content
Log in

Interaction of heparin with synthetic peptides corresponding to the C-terminal domain of intestinal mucins

  • Glycoconjugate Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Unlike most other mucins described to date, two intestinal mucins, rat MLP (rat Muc2) and human MUC2 have a C-terminal tail that is enriched in cationic amino acids. The distribution of charge in each case resembles that of several well known heparin binding proteins. Peptides designated E20-14 and F13-15, corresponding to the C-terminal 14 amino acids of the two mucins, were synthesized and shown to bind3H-labelled heparin by a process that was saturable and mediated by strong electrostatic interactions, givingK d values of 10−7 to 10−8 m. Using turbidometric analyses and native gel electrophoresis, we observed that peptide-heparin mixtures formed polydisperse aggregates that dissociated with a progressive increase in the concentration of heparin. Under certain conditions heparin protected the peptide from proteolysis by trypsin. Both heparin and dextran sulfate, the latter a highly sulfated synthetic polysaccharide, were potent inhibitors of3H-heparin binding to peptide E20-14, while less sulfated glycosaminoglycans were poorly- or non-inhibitory. Mucin in tissue dispersions and homogenates, or purified from rat intestine, did not bind to heparin, and failed to interact with an antibody specific for the peptide E20-14. Both mucin samples however, reacted with antibodies that recognize regions upstream of the C-terminal 14 amino acids. Immunofluorescent localization of E20-14 was confined to the basal perinuclear regions of goblet cells, whereas localization of an antibody to a flanking sequence on the N-terminal side of the C-tail, localized to mature mucin storage granules. These findings suggest that the heparin-binding C-tail of the mucin may be removed at an early stage of biosynthesis. Heparin-mucin complexes, if they formin vivo, are thus likely to be confined to the ER and/or Golgi compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu G, Huan LJ, Khatri IA, Wang D, Bennick A, Fahim REF, Forstner GG, Forstner JF (1992)J Biol Chem 267: 5401–7.

    Google Scholar 

  2. Huan LJ, Xu G, Forstner G, Forstner J (1992)Bichim Biophys Acta 1132: 79–82.

    Google Scholar 

  3. Gum JR, Hicks JW, Toribara NW, Rothe E-M, Lagace RE, Kim YS (1992)J Biol Chem 267: 21375–83.

    Google Scholar 

  4. Levy P, Picard J, Bruel A (1981)FEBS Lett 131: 275–61.

    Google Scholar 

  5. Cardin AD, Demeter DA, Weintraub HJR, Jackson RL (1991)Methods Enzymol 203: 556–83.

    Google Scholar 

  6. Gallagher JT, Lyon M, Steward WP (1986)Biochem J 236: 313–25.

    Google Scholar 

  7. Yanagishita M, Hascall VC (1992)J Biol Chem 267: 9451–54.

    Google Scholar 

  8. Lane DA, Adams L (1993)New Engl J Med 329: 129–30.

    Google Scholar 

  9. Jackson RL, Busch SJ, Cardin AD (1991)Pathol Rev 71: 481.

    Google Scholar 

  10. Pratt CW, Church FC (1993)Blood Coagulation and Fibrinolysis 4: 479–90.

    Google Scholar 

  11. Bazzoni G, Nuñez AB, Mascellani G, Bianchini P, Dejana E, Del Maschio A (1992)J Lab Clin Med 121: 268–75.

    Google Scholar 

  12. Webb MC, Ehrengruber MU, Clarke-Lewis I, Baggiolini M, Rot A (1993)Proc Natl Acad Sci USA 90: 7158–62.

    Google Scholar 

  13. Okazaki K, Honda E, Kono Y (1994)Arch Virol 134: 413–19.

    Google Scholar 

  14. Forstner JF, Forstner GG (1994) InPhysiology of the Gastrointestinal Tract vol. 1 (Johnson LR, ed.) pp. New York: Raven Press.

    Google Scholar 

  15. Bell AE, Sellers LA, Allen A, Cunliffe WJ, Morris ER, Ross-Murphy SB (1985)Gastroenterology 88: 269–80.

    Google Scholar 

  16. Wallace JL, Whittle BJR (1986)Scand J Gastroenterol 125 Suppl: 79–85.

    Google Scholar 

  17. Flint N, Cove FL, Evans GS (1994)J Cell Sci 107: 401–11.

    Google Scholar 

  18. Dohrman AF, Gallup M, Steiger DJ, Tsuda T, Kal H, Gum JR, Kim YS, Basbaum CB (1993)Molec Biol Cell 4:S: 191a.

    Google Scholar 

  19. Møller HJ, Heinegård D, Poulsen JH (1993)Analyt Biochem 209: 169–75.

    Google Scholar 

  20. Munson PJ, Rodbard D (1980)Anal Biochem 107: 220–39.

    Google Scholar 

  21. McPherson GA (ed.) (1985)EBDA, LIGAND, LOWRY. A collection of radioligand and binding analysis programs modified for microcomputers. Cambridge: Elsevier-Biosoft.

    Google Scholar 

  22. Khatri IA, Forstner GG, Forstner JF (1993)Methods in Molecular Biology Hounsell EF (ed.)14: 225–235.

    Google Scholar 

  23. Björnsson S (1993)Anal Biochem 210: 292–98.

    Google Scholar 

  24. Lambin P, Herance N, Fine JM (1986)Electrophoresis 7: 342–44.

    Google Scholar 

  25. Kouzi-Koliakos K, Koliakos GG, Tsilibary EC, Furcht LT, Charonis AS (1989)J Biol Chem 264: 17971–78.

    Google Scholar 

  26. Longas MO, Breitweiser KO (1991)Analyt Biochem 192: 193–96.

    Google Scholar 

  27. Abraham JA, Damn D, Bajardi A, Miller J, Klagsbrun M, Ezekowitz AB (1993)Biochem Biophys Res Commun 190: 125–33.

    Google Scholar 

  28. Mach H, Volkin DB, Burke CJ, Middaugh CR, Linhardt RJ, Fromm JR, Lognathan D (1993)Biochemistry 32: 5480–89.

    Google Scholar 

  29. Khachigian LM, Chesterman CN (1992)Pathology 24: 280–90.

    Google Scholar 

  30. Ishihara M, Tyrrell DJ, Staubert GB, Brown S, Cousens LS, Stack RJ (1993)J Biol Chem 268: 4675–83.

    Google Scholar 

  31. Volkin DB, Tsai PK, Dabora JM, Gress JO, Burke CJ, Lindhardt RJ, Middaugh CR (1993)Arch Biochem Biophys 300: 30–41.

    Google Scholar 

  32. Tyrrell DJ, Ishihara M, Rao N, Horne A, Kiefer MC, Stauber GB, Lam LH, Stack RJ (1993)J Biol Chem 268: 4684–89.

    Google Scholar 

  33. Marikovsky M, Breuing K, Liu PY, Eriksson E, Higashiyama S, Farber P, Abraham J, Klagsbrun M (1993)Proc Natl Acad Sci USA 90: 3889–93.

    Google Scholar 

  34. Moscatelli D (1992)J Biol Chem 267: 25803–9.

    Google Scholar 

  35. Tsutsui JI, Kadomatsu K, Matsubara S, Nakagawara A, Hamanoue M, Takao S, Shimazu H, Ohi Y, Maramatsu T (1993)Cancer Res 53: 1281–85.

    Google Scholar 

  36. Katoh K-I, Takeshita S, Sato M, Ito T, Amann E (1992)DNA Cell Biol 11: 735–43.

    Google Scholar 

  37. Powell PP, Klagsbrun M, Abraham JA, Jones RC (1993)Am J Pathol 143: 784–93.

    Google Scholar 

  38. Thompson SA, Higashiyama S, Wood K, Pollitt NS, Damm D, McEnroe G, Garrick B, Ashton N, Lau K, Hancock N, Klagsbrun M, Abraham JA (1994)J Biol Chem 269: 2541–49.

    Google Scholar 

  39. Maccarana M, Casu B, Lindahl U (1993)J Biol Chem 268: 23898–905.

    Google Scholar 

  40. Tessler S, Rockwell P, Hicklin D, Cohen T, Levi BZ, Witte L, Lemischka IR, Neufeld G (1994)J Biol Chem 269: 12456–61.

    Google Scholar 

  41. Zou S, Magura CE, Hurley WL (1992)Comp Biochem Physiol 103B: 889–95.

    Google Scholar 

  42. Pejler G, Karlström A (1993)J Biol Chem 268: 11817–22.

    Google Scholar 

  43. Sali A, Matsumoto R, McNeil HP, Karplus M, Stevens RL (1993)J Biol Chem 268: 9023–34.

    Google Scholar 

  44. Pejler G, Maccarana M (1994)J Biol Chem 269: 14451–56.

    Google Scholar 

  45. Hata A, Ridinger DN, Sutherland S, Emi M, Shuhua Z, Myers RL, Ren K, Cheng T, Inoue I, Wilson DE, Iverius P-H, Lalouel J-M (1993)J Biol Chem 268: 8447–57.

    Google Scholar 

  46. Pejler G, Söderström K, Karlström A (1994)Biochem J 299: 507–13.

    Google Scholar 

  47. Ostergaard P, Nordfang O, Petersen LC, Valentin S, Kristensen H (1993)Haemostasis 23: 107–11.

    Google Scholar 

  48. Pratt CW, Church FC (1992)J Biol Chem 267: 8789–94.

    Google Scholar 

  49. Westrup D, Ragg H (1994)Biochim Biophys Acta 1217: 93–96.

    Google Scholar 

  50. Wu YI, Sheffield WP, Blajchman MA (1994)Blood Coagulation and Fibrinolysis 5: 83–95.

    Google Scholar 

  51. Faller B, et al. (1992)Biochemistry 31: 8285–90.

    Google Scholar 

  52. Rapraeger A, Jalkanen M, Bernfield M (1986)J Cell Biol 103: 2683–96.

    Google Scholar 

  53. James S, Gibbs BF, Toney K, Bennett HPJ (1994)Analyst Biochem 217: 84–90.

    Google Scholar 

  54. Bober Barkalow FJ, Schwarzbauer JE (1991)J Biol Chem 266: 7812–18.

    Google Scholar 

  55. Kenagy RD, Nikkari ST, Welgus HG, Clowes AW (1994)J Clin Invest 93: 1987–93.

    Google Scholar 

  56. Woods A, McCarthy JB, Furcht LT, Couchman JR (1993)Molec Biol Cell 4: 605–13.

    Google Scholar 

  57. Charonis AS, Skubitz APN, Koliakos GG, Reger LA, Dege J, Vogel AM, Wohlhueter R, Furcht LT (1988)J Cell Biol 107: 1253–60.

    Google Scholar 

  58. Sobel M, Soler DF, Kermode JC, Harris RB (1992)J Biol Chem 267: 8857–62.

    Google Scholar 

  59. Inouye S, Ling N, Shimasaki S (1992)Molec Cell Endocrinol 90: 1–6.

    Google Scholar 

  60. Murphy-Ullrich JE, Gurusiddappa S, Frazier WA, Hook M (1993)J Biol Chem 268: 26784–89.

    Google Scholar 

  61. Ferran DS, Sobel M, Harris RB (1992)Biochemistry 31: 5010–16.

    Google Scholar 

  62. Rusnati M, Urbinati C, Presta M (1993)J Cell Physiol 154: 152–61.

    Google Scholar 

  63. Blankaert V, Hondermarck H, Baert JL, Boilly-Marer Y (1992)Comp Biochem Physiol 103B: 991–97.

    Google Scholar 

  64. Wilson O, Jacobs AL, Stewart S, Carson DD (1990)J Cell Physiol 143: 60–67.

    Google Scholar 

  65. Mohri H, Ohkubo T (1993)Arch Biochem Biophys 303: 27–31.

    Google Scholar 

  66. Watton J, Longstaff C, Lane DA, Barrowcliffe TW (1993)Biochemistry 32: 7286–93.

    Google Scholar 

  67. Zoppeti G, Caramazza I, Murakami Y, Ohno T (1992)Biochim Biophys Acta 1156: 92–98.

    Google Scholar 

  68. Inase N, Schreck RE, Lazarus SC (1993)Am J Physiol 264: L387–90.

    Google Scholar 

  69. Cole KR, Kumar S, Trong HL, Woodbury RG, Walsh KA, Neurath H (1991)Biochemistry 30: 648–55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, G., Forstner, G.G. & Forstner, J.F. Interaction of heparin with synthetic peptides corresponding to the C-terminal domain of intestinal mucins. Glycoconjugate J 13, 81–90 (1996). https://doi.org/10.1007/BF01049683

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01049683

Keywords

Navigation