Skip to main content
Log in

O-linked protein glycosylation structure and function

  • Mini-Reviews
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

There has been a recent resurgence of interest in the post-translational modification of serine and threonine hydroxyl groups by glycosylation, because the resulting O-linked oligosaccharide chains tend to be clustered over short stretches of peptide and hence they can present multivalent carbohydrate antigenic or functional determinants for antibody recognition, mammalian cell adhesion and microorganism binding. Co-operativity can greatly increase the affinity of interactions with antibodies or carbohydrate binding proteins. Thus, in addition to their known importance in bearing tumour associated antigens in the gastrointestinal and respiratory tracts, glycoproteins with O-linked chains have been implicated as ligands or co-receptors for selectins (mammalian carbohydrate binding proteins). Microorganisms may have adopted similar mechanisms for interactions with mammalian cells in infection, by having relatively low affinity ligands (adhesins) for carbohydrate binding, which may bind with higher affinity due to the multivalency of the host ligand and which are complemented by other virulence factors such as interactions with integrin-type molecules. In addition to specific adhesion signals from O-linked carbohydrate chains, multivalent O-glycosylation is involved in determining protein conformation and forming conjugate oligosaccharide-protein antigenic, and possible functional determinants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matsuura H, Greene T, Hakomori S (1989)J Biol Chem 264: 10472–76.

    Google Scholar 

  2. Leahy DJ, Axel R, Hendrickson WA (1992)Cell 68: 1145–62.

    Google Scholar 

  3. Kuwano M, Seguchi T, Ono M (1991)J Cell Science 98: 131–34.

    Google Scholar 

  4. Cole LA, Birkeni S, Perin F (1985)Biochem Biophys Res Commun 126: 333–39.

    Google Scholar 

  5. Fukuda M, Lauffenburger M, Sasaki H, Roger ME, Dell A (1987)J Biol Chem 262: 11952–57.

    Google Scholar 

  6. Pierce-Crétel A, Decottignies JP, Wieruszeski JM, Strecker G, Montreuil J, Spik G (1989)Eur J Biochem 182: 457–76.

    Google Scholar 

  7. Carlsson SR, Sasaki H, Fukuda M (1986)J Biol Chem 27: 12787–95.

    Google Scholar 

  8. Piller F, Piller V, Fox RI, Fukuda M (1988)J Biol Chem 263: 15146–50.

    Google Scholar 

  9. Inoue N, Takeuchi M, Asano K, Shimizu R (1993)Arch Biochem Biophys 301: 375–78.

    Google Scholar 

  10. Maes E, Wieruszeski J-M, Plancke Y, Strecker G (1995)FEBS Lett 358: 205–10.

    Google Scholar 

  11. Strecker G, Wierusceski J-M, Plancke Y, Boilly B (1995)Glycobiology 5: 137–46.

    Google Scholar 

  12. Hounsell EF, Feizi T (1982)Med Biol 160: 227–37.

    Google Scholar 

  13. Schachter H (1986)Biochem Cell Biol 64: 163–81.

    Google Scholar 

  14. Lamblin G, Lhermitte M, Klein A, Houdret N, Scharfman A, Ramphal R, Roussel P (1991)Am Rev Respir Dis 144: S19–24.

    Google Scholar 

  15. Hounsell EF, Wright DJ (1990)Carbohydr Res 205: 19–29.

    Google Scholar 

  16. Renouf DV, Hounsell EF (1993)Int J Biol Macromol 15: 37–42.

    Google Scholar 

  17. Bush CA, Feeney RE (1986)Int J Peptide Protein Res 28: 386–97.

    Google Scholar 

  18. Butanhof K, Gerken TA (1993)Biochemistry 32: 2650–63.

    Google Scholar 

  19. Paulsen H, Pollex-Kruger A, Sinnwell V (1991)Carbohydr Res 214: 199–226.

    Google Scholar 

  20. Mimura Y, Yamamoto Y, Inuoue Y, Chujo R (1992)Int J Biol Macromol 14: 242–49.

    Google Scholar 

  21. Pollex-Krüger A, Meyer B, Stuike-Prill R, Sinnwell V, Matta KL, Brockhausen I (1993)Glycoconjugate J 10: 365–80.

    Google Scholar 

  22. Paulsen H, Peters S, Bielfeldt T, Meldal M, Bock K (1995)Carbohydr Res 268: 17–34.

    Google Scholar 

  23. Imberty A, Delage M-M, Bourne Y, Cambillau C, Perez S (1991)Glycoconjugate J 8: 456–83.

    Google Scholar 

  24. Feizi T, Hounsell EF, Alais J, Veyrieres, David S (1992)Carbohydr Res 228: 289–97.

    Google Scholar 

  25. Biswas M, Rao V (1981)Int J Quantum Chem 20: 99–121.

    Google Scholar 

  26. Rosevear PR, Nunez HA, Barker R (1982)Biochemistry 21: 1421–31.

    Google Scholar 

  27. Lemieux RU, Bock KT (1983)Arch Biochem 221: 125–34.

    Google Scholar 

  28. Rao BNN, Dua VK, Bush CA (1985)Biopolymers 24: 2207–29.

    Google Scholar 

  29. Yan Z-Y, Bush CA (1990)Biopolymers 29: 799–811.

    Google Scholar 

  30. Thøgerson H, Lemieux RU, Bock K, Meyer B (1982)Can J Chem 60: 4457–65.

    Google Scholar 

  31. Breg J, Romijn D, Vliegenthart JFG, Strecker G, Montreuil J (1988)Carbohydr Res 183: 19–34.

    Google Scholar 

  32. Hounsell EF, Jones NJ, Gooi HC, Feizi T, Donald ASR, Feeney J (1988)Carbohydr Res 178: 67–78.

    Google Scholar 

  33. Strecker G, Wieruszeski J-M, Michalski J-C, Montreuil J (1989)Glycoconjugate J 6: 271–84.

    Google Scholar 

  34. Bechtel B, Ward AJ, Wroblewski K, Koprowski H, Thurin J (1990)J Biol Chem 265: 2028–37.

    Google Scholar 

  35. Hounsell EF (1995) InProgress in NMR Spectroscopy (Elmsley JW, Feeney J, Sutcliffe LH, eds)27. Oxford: Elsevier.

    Google Scholar 

  36. Herkt F, Parente JP, Leroy Y, Fournet B, Blanchard D, Carton J-P, van Halbeek H, Vliegenthart JFG (1985)Eur J Biochem 140: 123–29.

    Google Scholar 

  37. Nasir-Ud-Din, Jeanloz W, Lamblin G,Roussel P, van Halbeek H, Mutsaers JHGM, Vliegenthart JFG (1986)J Biol Chem 261: 1992–97.

    Google Scholar 

  38. Breg J, van Halbeek H, Vliegenthart JFG, Lamblin G, Houvenaghel M-C, Roussel P (1987)Eur J Biochem 168: 57–68.

    Google Scholar 

  39. van Halbeek H, Breg J, Vliegenthart JFG, Klein A, Lamblin G, Roussel P (1988)Eur J Biochem 1172: 443–460.

    Google Scholar 

  40. Savage AV, Donoghue CM, D'Arcy SM, Koeleman CAM,van den Eijnden DH (1990a)Eur J Biochem 192: 427–32.

    Google Scholar 

  41. Savage AV, Donohue JJ, Koeleman CAM, van den Eijnden DH (1990b)Eur J Biochem 192: 427–32.

    Google Scholar 

  42. Chai W, Hounsell EF, Cashmore GC, Rosankiewicz JR, Bauer CJ, Feeney J, Lawson AM (1992b)Eur J Biochem 207: 973–80.

    Google Scholar 

  43. Strecker G, Wieruszeski JM, Vuvillier O, Michalski JC, Montreuil J (1992)Biochimie 74: 39–52.

    Google Scholar 

  44. Klein A, Carnoy C, Lamblin G, Roussel P, van Kuik JA, Vliegenthart JFG (1993)Eur J Biochem 211: 491–500.

    Google Scholar 

  45. Prohaska R, Koerner Jr TAW, Armitage IM, Furthmyar H (1981)J Biol Chem 256: 5781–91.

    Google Scholar 

  46. Welsh EJ, Thom D, Morris ER, Rees DA (1985)Biopolymers 24: 2301–32.

    Google Scholar 

  47. Pepe G, Siri D, Oddon Y, Pavai AA, Reboul J-P (1991)Carbohydr Res 209: 67–81.

    Google Scholar 

  48. Strecker G, Wieruszeski J-M, Martel, Montreuil (1989)Carbohydr Res 185: 1–13.

    Google Scholar 

  49. Lamblin G, Rahmoune H, Wieruszeski J-M, Lhermitte M, Strecker G, Roussel P (1991)Biochem J 275: 199–206.

    Google Scholar 

  50. Mawhinney TP, Adelstein E, Gayer EA, Landrum DC, Barbero GJ (1992)Carbohydr Res 223: 187–208.

    Google Scholar 

  51. Yuen C-T, Lawson AM, Chai W, Larkin M, Stoll MS, Ashley CS, Sullivan FX, Ahern TJ, Feizi T (1992)Biochemistry 31: 9126–31.

    Google Scholar 

  52. Sangadala S, Ramadas Bhat U, Mendicino J (1993)Mol Cell Biochem 126: 37–47.

    Google Scholar 

  53. Lo-Guidice J-M, Wieruszeski J-M, Lemoine J, Verbert A, Roussel P, Lamblin G (1994)J Biol Chem 269: 18794–813.

    Google Scholar 

  54. Siciliano RS, Morris HR, Bennett HPJ, Dell A (1994)J Biol Chem 269: 910–20.

    Google Scholar 

  55. Lloyd KO, Savage A (1991)Glycoconjugate J 8: 493–98.

    Google Scholar 

  56. Campbell BJ, Davies MJ, Rhodes JM, Hounsell EF (1993)J Chromatogr 622: 137–46.

    Google Scholar 

  57. Karlsson NG, Hansson GC (1995)Anal Biochem 224: 538–41.

    Google Scholar 

  58. Davies M, Smith KD, Harbin A-M, Hounsell EF (1992)J Chromatogr 609: 125–31.

    Google Scholar 

  59. Davies MJ, Smith KD, Carruthers RA, Chai W, Lawson AM, Hounsell EF (1993)J Chromatogr 646: 317–26.

    Google Scholar 

  60. Klein A, Carnoy C, Lo-Guidice J-M, Lamblin G, Roussel P (1992)Carbohydr Res 236: 9–15.

    Google Scholar 

  61. Hounsell EF (1993)Glycoprotein Analysis in Biomedicine. Totowa, New Jersey: Humana Press.

    Google Scholar 

  62. McMahon RFT, Panesar MJR, Stoddart RW (1994)Histochem J 25: 504–18.

    Google Scholar 

  63. O'Boyle KP, Zamore R, Adluri S, Cohen A, Kermeny N, Welt S, Lloyd KO, Oettgen HF, Old LJ, Livingston PO (1992)Cancer Res 52: 5663–67.

    Google Scholar 

  64. Vavasseur F, Dole K, Yang J, Matta KL, Myerscough N, Corfield A, Paraskeva C, Brockhausen I (1994)Eur J Biochem 222: 415–24.

    Google Scholar 

  65. Linsley KB, Chan S-Y, Chan S, Reinhold BB, Lisi PJ, Reinhold VN (1994)Anal Biochem 219: 207–17.

    Google Scholar 

  66. Baeckström D, Nilsson O, Price MR, Lindholm L, Hansson GC (1993)Cancer Res 5: 755–61.

    Google Scholar 

  67. Baeckström D, Karlsson N, Hansson GC (1994)J Biol Chem 269: 14430–37.

    Google Scholar 

  68. Blumenfeld OO, Lalezari P, Khorshidi M, Puglia K, Fukuda M (1992)Blood 80: 2388–95.

    Google Scholar 

  69. Savage AV, D'Arcy SMT, Donoghue CM (1991)Biochem J 279: 95–103.

    Google Scholar 

  70. Chai W, Hounsell EF, Cashmore GC, Rosankiewicz JR, Bauer CJ, Feeney J, Feizi T, Lawson AM (1992)Eur J Biochem 203: 257–68.

    Google Scholar 

  71. Campbell JB, Finnie IA, Hounsell EF, Rhodes JA (1995)J Clin Invest 95: 571–76.

    Google Scholar 

  72. Klein A, Carnoy C, Wieruszeski JM, Strecker G, Strang AM, van Halbeek H, Roussel P, Lamblin G (1992)Biochemistry 31: 6152–65.

    Google Scholar 

  73. Boren T, Falk P, Rothe KA, Larson G, Normark S (1993)Science 262: 1892–95.

    Google Scholar 

  74. Krivan HC, Clark GF, Smith DF, Wilkins TD (1986)Infect Immunol 53: 573–81.

    Google Scholar 

  75. Fontaine IA, Aissi EA, Bouquelet SJL (1994)Current Microbiol 28: 325–30.

    Google Scholar 

  76. Neeser J-R, Grafström RC, Woltz A, Brassart D, Fryder V, Guggenheim B (1995)Glycobiology 5: 97–104.

    Google Scholar 

  77. Stehle T, Yan Y, Benjamin TL, Harrison SC (1994)Nature 369: 160–63.

    Google Scholar 

  78. Wiley DC, Skehel JJ (1987)Ann Rev Biochem 56: 365–94.

    Google Scholar 

  79. Rozdzinski E, Burnette WN, Jones T, Mar V, Tuomanen E (1993)J Exp Med 178: 917–24.

    Google Scholar 

  80. Hannah JH, Menozzi FD, Renauld G, Locht C, Brennan MJ (1994)Infect Immunity 62: 5010–19.

    Google Scholar 

  81. Kozarsky KF, Call SM, Dower SK, Krieger M (1988)Proc Natl Acad Sci USA 85: 4335–39.

    Google Scholar 

  82. Kozarsky K, Kingsley D, Krieger M (1988)Mol Cell Biol 8: 3357–63.

    Google Scholar 

  83. Saitoh O, Gallagher RE, Fukuda M (1991)Cancer Res 51: 2854–62.

    Google Scholar 

  84. Voigt CG, Maurer-Fogy I, Adolf GR (1992)Fed Eur Biochem Soc 314: 85–88.

    Google Scholar 

  85. Hart GW, Kelly WG, Blomberg MA, Roquemore EP, Dong L-YD, Kreppel L, Chou T-Y, Snow D, Greis DD (1994)In:44th Mosbach Colloquium: Glyco- and Cell Biology (Weiland F, Reutter W. eds) pp. 91–103. Heidelberg: Springer Verlag.

    Google Scholar 

  86. Harris RJ, Spellman ME (1993)Glycobiology 3: 219–24.

    Google Scholar 

  87. Stults NL, Cummings RD (1993)Glycobiology 3: 589–96.

    Google Scholar 

  88. Earnst JF, Mermod J-J, Richman LH (1992)Eur J Biochem 203: 663–67.

    Google Scholar 

  89. Hounsell EF, Fukuda M, Powell ME, Feizi T, Hakomori S (1980)Biochem Biophys Res Commun 92: 1143–50.

    Google Scholar 

  90. Hounsell EF, Lawson AM, Feeney J, Gooi HC, Pickering NJ, Stoll MS, Lui SC, Feizi T (1985)Eur J Biochem 148: 367–66.

    Google Scholar 

  91. Kurosaka A, Nakajima H, Funakoshi I, Matsuyama M, Nagayo T, Yamashia I (1983)J Biol Chem 258: 11594–98.

    Google Scholar 

  92. Hounsell EF, Lawson AM, Stoll MS, Kane DP, Cashmore GC, Carruthers RA, Feeney J, Feizi T (1989)Eur J Biochem 186: 597–610.

    Google Scholar 

  93. Fiat AM, Jolles P, Vliengenthart JFG, van Halbeek H (1984)Proc XIIth Int Carbohydr Symp (Vliegenthart JFG, Kamerling JP, Veldink GA, eds) p. 426. Zeist, The Netherlands: Vonk Publishers.

    Google Scholar 

  94. van Halbeek H, Strang A-M, Lhermitte M, Rahmoune H, Lamblin G, Roussel P (1994)Glycobiology 4: 203–19.

    Google Scholar 

  95. van Halbeek H, Dorland L, Haverkamp J, Veldink GA, Vliegenthart JFG, Fournet B, Ricart G, Montreuil J, Gathmann WD, Aminoff D (1981)Eur J Biochem 118: 487–95.

    Google Scholar 

  96. van Halbeek H, Gerwig GJ, Vliegenthart JFG, Smits HL, van Kerkhof PM, Kramer MF (1983)Biochim Biophys Acta 747: 107–16.

    Google Scholar 

  97. Mutsaers JHGM, van Halbeek H, Vliegenthart JFG, Wu, Lawson AM, Kabat EA (1986)Eur J Biochem 157: 139–46.

    Google Scholar 

  98. Dua VK, Rao BNN, Wu S-S, Dube VE, Bush CE (1986)J Biol Chem 261: 1599–1608.

    Google Scholar 

  99. Breg J, van Halbeek H, Vliegenthart JFG, Klein A, Lamblin G, Roussel P (1988)Eur J Biochem 171: 643–54.

    Google Scholar 

  100. Klein A, Carnoy C, Lamblin G, Roussel P, van Kuik JA, de Waard P, Vliegenthart JFG (1991)Eur J Biochem 198: 151–68.

    Google Scholar 

  101. van Kuik JA, Waard P, Vliegenthart JFG, Klein A, Carnoy C, Lamblin G, Roussel P (1991)Eur J Biochem 198: 169–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hounsell, E.F., Davies, M.J. & Renouf, D.V. O-linked protein glycosylation structure and function. Glycoconjugate J 13, 19–26 (1996). https://doi.org/10.1007/BF01049675

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01049675

Keywords

Navigation