Skip to main content
Log in

Reaction, trapping, and multifractality in one-dimensional systems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In the first part of this paper, we present two variants of the A+A→A and A+A→P reaction in one dimension that can be investigated analytically. In the first model, pairs of neighboring particles disappear reactively at a rate which is independent of their relative distance. It is shown that the probability density ϕ(x) for a nearest neighbor distance equal tox approaches the scaling formϕ(x) ∼c exp(−cx/2)/(cx)1/2 in the long-time limit, withc being the concentration of particles. The second model is a ballistic analogue of the coagulation reaction A+A→ A. The model is solved by reducing it to a first-passagetime problem. The anomalous relaxation dynamics can be linked in a direct way to the fractal time properties of random walks. In the second part of this paper, we discuss the complications that arise in systems with disorder. We present a new approach that relates first-passage-time characteristics in a one-dimensional random walk to properties of random maps. In particular, we show that Sinai disorder is a borderline case for the appearance of multifractal properties. Finally, we apply a previously introduced renormalization technique to calculate the survival probability of particles moving on the line in the presence of a background of imperfect traps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Toussaint and F. Wilczek,J. Chem. Phys. 78:2642 (1983).

    Google Scholar 

  2. D. C. Torney,J. Chem. Phys. 79:3606 (1983).

    Google Scholar 

  3. P. Meakin and H. E. Stanley,J. Phys. A 17:L173 (1984).

    Google Scholar 

  4. G. Zumofen, A. Blumen, and J. Klafter,J. Chem. Phys. 82:3198 (1985).

    Google Scholar 

  5. Z. Rácz,Phys. Rev. Lett. 55:1707 (1985).

    Google Scholar 

  6. J. L. Spouge,Phys. Rev. Lett. 60:871 (1988).

    Google Scholar 

  7. L. W. Anacker and R. Kopelman,J. Phys. Chem. 91:5555 (1987).

    Google Scholar 

  8. P. Argyrakis and R. Kopelman,J. Lumin. 40:690 (1988).

    Google Scholar 

  9. W. Sheu, K. Lindenberg, and R. Kopelman,Phys. Rev. A 42:2279 (1990).

    Google Scholar 

  10. C. R. Doering and D. Ben-Avraham,Phys. Rev. A 38:3035 (1988); C. R. Doering and D. ben-Avraham,Phys. Rev. Lett. 62:2563 (1989); M. A. Burschka, C. R. Doering, and D. ben-Avraham,Phys. Rev. Lett. 63:700 (1989).

    Google Scholar 

  11. H. Schnörer, V. Kurovkov, and A. Blumen,Phys. Rev. Lett. 63:805 (1989).

    Google Scholar 

  12. Y. Elsken and H. L. Frisch,Phys. Rev. A 31:3812 (1985).

    Google Scholar 

  13. W. Sheu and K. Lindenberg,Phys. Lett. A 147:437 (1990).

    Google Scholar 

  14. H. B. Rosenstock,Phys. Rev. 187:1166 (1969).

    Google Scholar 

  15. B. Ya. Balagurov and V. G. Vaks,Sov. Phys. JETP 38:968 (1974).

    Google Scholar 

  16. P. Grassberger and I. Procaccia,J. Chem. Phys. 77:6281 (1982).

    Google Scholar 

  17. A. Blumen, G. Zumofen, and J. Klafter,Phys. Rev. B 30:5379 (1984).

    Google Scholar 

  18. J. Anlauf,Phys. Rev. Lett. 52:1845 (1984).

    Google Scholar 

  19. C. Van den Broeck and M. Bouten,J. Stat. Phys. 45:1031 (1986).

    Google Scholar 

  20. S. Kanno,Prog. Theor. Phys. 79:1330 (1988).

    Google Scholar 

  21. K. Lindenberg, B. West, and R. Kopelman,Phys. Rev. Lett. 60:1777 (1988).

    Google Scholar 

  22. A. S. Mikhailov,Phys. Rep. 184:307 (1989).

    Google Scholar 

  23. W. Sheu, C. Van den Broeck, and K. Lindenberg,Phys. Rev. A 43:4401 (1991).

    Google Scholar 

  24. P. Argyrakis and R. Kopelman,Phys. Rev. A 41:2114, 2121 (1990).

    Google Scholar 

  25. C. Van den Broeck, J. Houard, and M. Malek Mansour,Physica 101A:167 (1980).

    Google Scholar 

  26. W. Feller,An Introduction to Probability Theory and its Application (Wiley, New York, 1968).

    Google Scholar 

  27. J. Machta,Phys. Rev. B 24:5260 (1981);J. Stat. Phys. 30:305 (1983).

    Google Scholar 

  28. C. Van den Broeck,Phys. Rev. Lett. 62:1421 (1989);Phys. Rev. A 40:7334 (1989); Random walks on fractals, inTeubner Texte für Physik, IPSO-4 Conference, W. Ebeling, ed. (Rostock, 1989).

    Google Scholar 

  29. J. M. Parrondo, H. L. Martinez, R. Kawai, and K. Lindenberg,Phys. Rev. A 42:723 (1990); B. Khang and S. Redner,J. Phys. A 22:887 (1989).

    Google Scholar 

  30. C. Van den Broeck and V. Balakrishnan,Ber. Bunsenges. Phys. Chem. 95:342 (1991).

    Google Scholar 

  31. K. W. Kehr and K. Murthy,Phys. Rev. A 40:2080 (1989).

    Google Scholar 

  32. J. Bernasconi and W. R. Schneider, inFractals in Physics, L. Pietronero and E. Tosatti, eds. (North-Holland, Amsterdam, 1986), p. 409.

    Google Scholar 

  33. B. Mandelbrot,The Fractal Geometry of Nature (Freeman, San Francisco, 1982).

    Google Scholar 

  34. M. Barnsley,Fractals Everywhere (Academic Press, Boston, 1988).

    Google Scholar 

  35. T. Halsey, M. Jensen, L. Kadanoff, I. Procaccia, and B. Shraiman,Phys. Rev. A 33:1141 (1986).

    Google Scholar 

  36. R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani,J. Phys. A 18:2157 (1985).

    Google Scholar 

  37. T. Tel,Z. Naturforsch. A 43:1154 (1988).

    Google Scholar 

  38. P. Széphalusy and T. Tel,Phys. Rev. A 34:2520 (1986).

    Google Scholar 

  39. P. Széphalusy and U. Behn, Z.Physik B 65:337 (1987).

    Google Scholar 

  40. Ya. Sinai,Theor. Prob. Appl. 27:247 (1982).

    Google Scholar 

  41. S. Havlin and A. Bunde,Physica D 38:184 (1989); S. Havlin,Physica A 168:507 (1990).

    Google Scholar 

  42. P. Talkner, P. Hanggi, E. Freidman, and D. Trautmann,J. Stat. Phys. 48:231 (1987).

    Google Scholar 

  43. T. Tel, Transient chaos, inDirections in Chaos, Vol. 3, Hao Bai-Lin, ed. (World Scientific, Singapore, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van den Broeck, C. Reaction, trapping, and multifractality in one-dimensional systems. J Stat Phys 65, 971–990 (1991). https://doi.org/10.1007/BF01049593

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01049593

Key words

Navigation