Skip to main content
Log in

Carbohydrate exposure of human promyelocytic HL60 cells and histiocytic U937 cells during phagocytic differentiation assessed with fluoresceinated lectins

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The display of carbohydrate structures was measured in promyelocytic HL60 cells and in histiocytic U937 cells induced to differentiate to phagocytic cellsin vitro during three to seven days of cultivation in the presence of dimethylsulfoxide (DMSO). It was assessed by micro-or spectrofluorometric quantification of the binding of fluorescent lectins. Changes in the cell size and the association and uptake of IgG-or complementopsonized yeast cells (Saccharomyces cerevisiae) were used as signs of phagocyte differentiation.

The binding of wheat germ agglutinin (WGA), concanavalin A (Con A),Ricinus communis agglutinin-I (RCA-I) andUlex europaeus agglutinin-I (UEA-I) varied due to the presence of DMSO during cultivation, and without DMSO also on the number of days in culture and the type of cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMSO:

dimethylsulfoxide

PMA:

phorbol 12-myristate 13-acetate

KRG:

Krebs-Ringer phosphate buffer with glucose

WGA:

wheat germ agglutinin

Con A:

concanavalin A

RCA-I:

Ricinus communis agglutinin-I

UEA-I:

Ulex europaeus agglutinin-I

References

  1. Hart DA (1980) J Clin Nutr 33:2416–25.

    Google Scholar 

  2. Duguid JP, Old DC (1980) in Bacterial Adherence, Receptors and Recognition, Ser B, Vol. 6, ed. Beachey EH, Chapman and Hall, London, p 185–217.

    Google Scholar 

  3. Eshdat Y, Sharon N (1984) Biol Cell 51:259–66.

    PubMed  Google Scholar 

  4. Hughes RC, Pena SDJ (1981) in Carbohydrate Metabolism and Its Disorders, eds. Randle PJ, Steiner DF, Whelan, WJ, Academic Press, London, p 363–423.

    Google Scholar 

  5. Sharon N (1984) Biol Cell 51:239–46.

    PubMed  Google Scholar 

  6. Monsigny M, Kieda C, Roche A-C (1983) Biol Cell 47:95–110.

    Google Scholar 

  7. Ashwell G, Harford J (1982) Annu Rev Biochem 51:531–54.

    PubMed  Google Scholar 

  8. Wolkoff AW, Klausner RD, Ashwell G, Harford J (1984) J Cell Biol 98:375–81.

    PubMed  Google Scholar 

  9. Wall DA, Hubbard AL (1985) J Cell Biol 101:2104–12.

    PubMed  Google Scholar 

  10. Izhar M, Nuchamowitz Y, Mirelman D (1982) Infect Immun 35:1110–18.

    PubMed  Google Scholar 

  11. Hakomori S (1985) Cancer Res 45:2405–14.

    PubMed  Google Scholar 

  12. Hammarström S (1985) in Tumor Marker Antigens, ed. Holmgren J, Studentlitteratur, Lund, p 34–51.

    Google Scholar 

  13. Gallagher R, Collins S, Trujillo J, McCredie K, Aheaon M, Tsai S, Metzger R, Anlakh G, Ruschetti F, Gallo R (1979) Blood 54:713–32.

    PubMed  Google Scholar 

  14. Collins SJ, Ruscetti FW, Gallagher RE, Gallo RC (1979) J Exp Med 149:969–74.

    PubMed  Google Scholar 

  15. Stendahl O, Dahlgren C, Hed J (1982) in Biochemistry and Functions of Phagocytes, eds. Rossi F, Patriarca P, Plenum Press, New York, Adv Exp Med Biol 144:531–37.

    Google Scholar 

  16. Stendahl O, Dahlgren C, Hed J (1982) J Cell Physiol 112:217–21.

    PubMed  Google Scholar 

  17. Stendahl O, Andersson T, Dahlgren C, Magnusson K-E (1986) Biochim Biophys Acta 881:430–36.

    PubMed  Google Scholar 

  18. Jenis DM, Stepanowski AL, Blair OC, Burger DE, Sartorelli AC (1984) J Cell Physiol 121:501–7.

    PubMed  Google Scholar 

  19. Harris P, Ralph P (1985) J Leucocyte Biol 37:407–22.

    Google Scholar 

  20. Sundström C, Nilsson K (1976) Int J Cancer 17:565–77.

    PubMed  Google Scholar 

  21. Nilsson K, Forsbeck K, Gidlund M, Sundström C, Totterman T, Sällström J, Venge P (1981) in Haematology and Blood Transfusion, Vol. 26, Modern Trends in Human Leukemia IV, eds. Neth R, Gallo R, Graf L, Manweiler C, Winkler K, Berlin, Springer Verlag, p 215–21.

    Google Scholar 

  22. Nilsson K, Kimura A, Klareskog L, Andersson LC, Gahmberg CG, Wigzell H (1981) Leuk Res 5:185–93.

    PubMed  Google Scholar 

  23. Hed J (1977) FEMS Microbiol Lett 1:357–60.

    Google Scholar 

  24. Sahlin S, Hed J, Rundqvist I (1983) J Immunol Meth 60:115–24.

    Google Scholar 

  25. Stendahl O, Tagesson C, Magnusson K-E, Edebo L. (1977) Immunology 32:11–18.

    PubMed  Google Scholar 

  26. Pincus SH (1986) Proc Soc Exp Biol Med 182:344–49.

    PubMed  Google Scholar 

  27. Mizoguchi A, Takasaki S, Maeda S, Kobata A (1984) J Biol Chem 259:11949–57.

    PubMed  Google Scholar 

  28. Klock JC, Macher BA, Lee WMF (1981) Blood Cells 7:247–55.

    PubMed  Google Scholar 

  29. Thorpe SJ, Feizi T (1984) Biosci Rep 4:673–85.

    PubMed  Google Scholar 

  30. Fukuda M, Koeffler HP, Minowada J (1981) Proc Natl Acad Sci USA 78:6299–303.

    PubMed  Google Scholar 

  31. Brandley BK, Schnaar RL (1986) J Leucocyte Biol 40:97–111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnusson, KE., Stendahl, O. Carbohydrate exposure of human promyelocytic HL60 cells and histiocytic U937 cells during phagocytic differentiation assessed with fluoresceinated lectins. Glycoconjugate J 4, 203–210 (1987). https://doi.org/10.1007/BF01049457

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01049457

Key words

Navigation