Orientation responses of individual larder beetles,Dermestes ater (Coleoptera, Dermestidae), to directional shifts in wind stimuli

Abstract

Anemotaxis in adult larder beetles, Dermestes ater,was investigated using a locomotion compensator, to uncover the mechanism(s) by which beetles maintain a course direction relative to a wind stimulus. Compared to walking in still air, anemotactically orienting beetles walk with the following characteristics over 60-s periods: (1) reduced locomotor and turning rates, (2) sustained, relatively straight paths with course directions at various angles to the wind, and (3) an increased tendency to stop for brief periods. Differences in wind speed affect mainly path straightness, which increases positively with stimulus intensity. Beetles “track” the wind direction equally well moving up or downwind, and they are able to orient at angles either close to the wind or at more oblique angles. When the wind direction was shifted 90°, the beetles turned, usually over the short angle, to their previous course heading relative to the stimulus. Indvidual beetles exhibited preferred course directions over several trials within a period of 20 min. Each beetle regained its particular anemotactic angle after the 90° shift in the stimulus direction. Although the beetles paused in some trials, stopping was not required to reorient to the altered stimulus direction.

This is a preview of subscription content, log in to check access.

References

  1. Bailey, W. J., and Thompson, P. (1977). Acoustic orientation in the cricketTeleogryllus oceanicus (Le Guillou).J. Exp. Biol. 67: 61–75.

    Google Scholar 

  2. Batchelet, E. (1981).Circular statistics in biology Academic Press, New York.

    Google Scholar 

  3. Bell, W. J. (1984). Chem-orientation in walking insects. In Bell, W. J., and Carde, R. T. (eds.),Chemical Ecology of Insects, Chapman & Hall, London, pp. 93–109.

    Google Scholar 

  4. Bell, W. J., and Kramer, E. (1979). Search and anemotactic orientation of cockroaches.J. Insect Physiol. 25: 631–640.

    Google Scholar 

  5. Bell, W. J., Tobin, T. R., Vogel, G., and Surber, J. L. (1983). Visual course control of escape orientation in the cockroachBlaberus craniifer: Role of internal and external information.Physiol. Entomol. 8: 121–132.

    Google Scholar 

  6. Heinzel, H. G., and Böhm, H. (1984). Wind orientation in walking carrion beetles (Necrophorus humator F.) under closed and open loop conditions. In Varju, D., and Schnitzler, H.-U. (eds.),Localization and Orientation in Biology and Engineering, Springer Verlag, Berlin, pp. 173–176.

    Google Scholar 

  7. Jander, R. (1957). Die optische richtungsorientierung der roten Waldameise (Formica rufa). Z. vergl. Physiol.40: 162–238.

    Google Scholar 

  8. Jander, R. (1963). Grundleistungen der licht- und Schwereorientierung von Insekten.Z. vergl. Physiol. 47: 381–430.

    Google Scholar 

  9. Kramer, E. (1976). The orientation of walking honeybees in odour fields with small concentration gradients.Physiol. Entomol. 1: 27–37.

    Google Scholar 

  10. Linsenmair, K. E. (1969). Anemomenotaktische Orientierung bei tenebrioniden und mistakäfern (Insecta, Coleoptera).Z. vergl. Physiol. 64: 154–211.

    Google Scholar 

  11. Linsenmair, K. E. (1972). Anemotactic orientation of beetles and scorpions. In Galler, S. R., Schmidt-Koenig, K., Jacobs, G. J., and Belleville, R. E. (eds.),Animal Orientation and Navigation, NASA, Washington, D.C., pp. 501–510.

    Google Scholar 

  12. Linsenmair, K. E. (1973). Die Windorientierung laufender Insekten.Fortsch. Zool. 21: 59–79.

    Google Scholar 

  13. Mittelstaedt, M.-L. (1972). Idiothetic course control and visual orientation. In Wehner, R. (ed.),Information Processing in the Visual Systems of Arthropods, Springer-Verlag, New York, pp. 275–279.

    Google Scholar 

  14. Mittelstaedt, M.-L., Mittelstaedt, H., and Mohren, W. (1979). Interaction of gravity and idiothetic course control in millipedes.J. Comp. Physiol. 133: 267–281.

    Google Scholar 

  15. Murphey, R. K., and Zaretsky, M. D. (1972). Orientation to calling song by female crickets,Scapsipedus marginatus (Gryllidae).J. Exp. Biol. 56: 335–352.

    Google Scholar 

  16. Pollack, G. S., Huber, F. and Weber, T. (1984). Frequency and temporal pattern-dependent phonotaxis of crickets (Teleogryllus oceanicus) during tethered flight and compensated walking.J. Comp. Physiol. 154: 13–26.

    Google Scholar 

  17. Schmilz, B., Scharstein, H., and Wendler, G. (1982). Phonotaxis inGryllus campestris L. (Orthoptera, Gryllidae). I. Mechanism of acoustic orientation in intact female crickets.J. Comp. Physiol. 148: 431–444.

    Google Scholar 

  18. Tobin, T. R., and Bell, W. J. (1986). Chemo-orientation of maleTrogoderma variabile (Coleoptera, Dermestidae) in a simulated corridor of female sex pheromone.J. Comp. Physiol. 158: 729–739.

    Google Scholar 

  19. Weber, T., Thorson, J., and Huber, F. (1981). Auditory behavior of the cricket. I. Dynamics of compensated walking and discrimination paradigms on the Kramer treadmill.J. Comp. Physiol. 141: 215–232.

    Google Scholar 

  20. Wendler, G. (1975). Physiology and systems analysis of gravity orientation in two insect species (Carausius morosus, Calandra granaria). Fortsch. Zool.23: 33–48.

    Google Scholar 

  21. Wendler, G., Dambach, M., Schmitz, B., and Scharstein, H. (1980). Analysis of the acoustic orientation behavior in crickets (Gryllus campestris L.).Naturwissenschaften 67: 99–100.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to William J. Bell.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bell, W.J., Tobin, T.R. & Sorensen, K.A. Orientation responses of individual larder beetles,Dermestes ater (Coleoptera, Dermestidae), to directional shifts in wind stimuli. J Insect Behav 2, 787–801 (1989). https://doi.org/10.1007/BF01049401

Download citation

Key words

  • orientation
  • anemotaxis
  • larder beetles
  • Dermestes ater