Skip to main content
Log in

Properties of the attractor of a scalar parabolic PDE

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We consider a general scalar one-dimensional semilinear parabolic partial differential equation generating a semiflow with an attractor in an adequate state space. Generalizing known results, it is shown that this attractor is the graph of a function over a compact subset of a finite-dimensional subspace of the state space. In addition, we construct an example with a special interest for the geometric or bifurcation theory of this type of parabolic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amann, H. (1985). Global existence for semilinear parabolic systems.J. Reine Angew. Math. 360, 47–83.

    Google Scholar 

  • Angenent, S. (1986). The Morse-Smale property for a semi-linear parabolic equation.J. Diff. Eq. 62, 427–442.

    Google Scholar 

  • Angenent, S. (1988). The zero set of solution of a parabolic equation.J. Reine Angew. Math. 390, 79–96.

    Google Scholar 

  • Angenent, S., and Fiedler, B. (1988). The dynamics of rotating waves in scalar reaction diffusion equations.Trans. AMS 307, 545–568.

    Google Scholar 

  • Brunovsky, P. (1989). The attractor of the scalar reaction-diffusion equation is a smooth graph (preprint).

  • Brunovsky, P., and Chow, S.-N. (1984). Generic properties of stationary solutions of reaction-diffusion equations.J. Diff. Eq. 53, 1–23.

    Google Scholar 

  • Brunovsky, P., and Fiedler, B. (1986). Numbers of zeros on invariant manifolds in reaction-diffusion equations.Nonlin. Anal. TMA 10, 179–193.

    Google Scholar 

  • Brunovsky, P., and Fiedler, B. (1988). Connecting orbits in scalar reaction diffusion equations. InDynamics Reported, Vol. 1, John Wiley, New York, pp. 57–89.

    Google Scholar 

  • Brunovsky, P., and Fiedler, B. (1989). Connecting orbits in scalar reaction diffusion equations II: The complete solution.J. Diff. Eq. 81, 106–136.

    Google Scholar 

  • Casten, R. C., and Holland, C. J. (1978). Instability results for reaction diffusion equations with Neumann boundary conditions.J. Diff. Eq. 27, 266–273.

    Google Scholar 

  • Chafee, N., and Infante, E. (1974). A bifurcation problem for a nonlinear parabolic equation.J. Appl. Anal. 4, 17–37.

    Google Scholar 

  • Conley, C. C., and Smoller, J. (1980). Topological techniques in reaction-diffusion equations. In Yäger, Rost, and Tautu (eds.),Biological Growth and Spread, Springer Lecture Notes in Biomathematics, 38, pp. 473–483.

  • Do Carmo, M. P. (1976).Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Fiedler, B., and Maller-Paret, J. (1988). The Poincaré-Bendixson theorem for scalar reaction diffusion equations (preprint).

  • Filipov, A. F. (1988).Differential Equations with Discontinuous Righthand Sides, Kluwer Academic, New York.

    Google Scholar 

  • Fusco, G., and Hale, J. K. (1985). Stable equilibria in a scalar parabolic equation with variable diffusion.SIAM J. Math. Anal. 16, 1152–1164.

    Google Scholar 

  • Fusco, G., and Rocha, C. (1989). A permutation related to the dynamics of a scalar parabolic PDE.J. Diff. Eq. 91, 111–137.

    Google Scholar 

  • Hale, J. K. (1985). Asymptotic behavior and dynamics in infinite dimensions. In Hale, J. K., and Martinez-Amores (eds.),Res. Notes Math. Vol. 132, Pitman, pp. 1–41.

  • Hale, J. K. (1988).Asymptotic Behavior of Dissipative Systems, Math. Surv. Monogr. 25, AMS.

  • Hale, J. K., and Rocha, C. (1985). Bifurcations in a parabolic equation with variable diffusion.Nonlin. Anal. TMA 9, 479–494.

    Google Scholar 

  • Hale, J. K., Magalhães, L. T., and Oliva, W. (1984).An Introduction to Infinite Dimensional Dynamical Systems—Geometric Theory, Springer-Verlag, New York.

    Google Scholar 

  • Henry, D. (1981).Geometric Theory of Semilinear Parabolic Equations, Lect. Notes Math., Vol. 840, Springer-Verlag, New York.

    Google Scholar 

  • Henry, D. (1985). Some infinite dimensional Morse-Smale systems defined by parabolic differential equations.J. Diff. Eq. 59, 165–205.

    Google Scholar 

  • Hirsch, M. W. (1976).Differential Topology, Springer-Verlag, New York.

    Google Scholar 

  • Jolly, M. S. (1989). Explicit construction of an inertial manifold for a reaction-diffusion equation.J. Diff. Eq. 78, 220–261.

    Google Scholar 

  • Ladyzhenskaya, O. A., Solonikov, V. A., and Ural'ceva, N. N. (1968).Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs 23, AMS.

  • Matano, H. (1973). Asymptotic behavior and stability of solutions of semilinear diffusion equations.Res. Inst. Math. Sci. Kyoto 15, 401–458.

    Google Scholar 

  • Matano, H. (1978). Convergence of solutions of one dimensional semilinear parabolic equations.J. Math. Kyoto Univ. 18, 224–243.

    Google Scholar 

  • Matano, H. (1982). Nonincrease of lap number of a solution for a one dimensional semilinear parabolic equation.Pub. Fac. Sci. Univ. Tokyo 29, 401–441.

    Google Scholar 

  • Rocha, C. (1985). Generic properties of equilibria of reaction-diffusion equations with variable diffusion.Proc. Roy. Soc. Edinburgh Sect. A 101, 385–405.

    Google Scholar 

  • Rocha, C. (1988). Examples of attractors in scalar reaction-diffusion equations.J. Diff. Eq. 73, 178–195.

    Google Scholar 

  • Smoller, J., and Wasserman, A. (1984). Generic bifurcation of steady-state solutions.J. Diff. Eq. 52, 432–438.

    Google Scholar 

  • Sternberg, S. (1983).Lectures on Differential Geometry, Chelsea, New York.

    Google Scholar 

  • Yanagida, E. (1982). Stability of stationary distributions in space dependent population growth process.J. Math. Biol. 15, 37–50.

    Google Scholar 

  • Zelenyak, T. J. (1968). Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable.Diff. Eq. 4, 17–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocha, C. Properties of the attractor of a scalar parabolic PDE. J Dyn Diff Equat 3, 575–591 (1991). https://doi.org/10.1007/BF01049100

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01049100

Key words

Navigation