Skip to main content
Log in

Localization and approximation of attractors for the Ginzburg-Landau equation

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper studies the long-term behavior of solutions to the Ginzburg-Landau partial differential equation. For each positive integerm we explicitly produce a sequence of approximate inertial manifolds m,j ,j = 1, 2,..., of dimensionm and associate with each manifold a thin neighborhood into which the orbits enter with an exponential speed and in a finite time. Of course this neighborhood contains the universal attractor which embodies the large time dynamics of the equations. The thickness of these neighborhoods decreases with increasingm for a fixed orderj; however, for a fixedm no conclusion can be made about the thickness of the neighborhoods associated to two differentj's. The neighborhoods associated to the manifolds localize the universal attractor and provide computabie large time approximations to solutions of the Ginzburg-Landau equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benjamin, T. B. (1967). Some developments in the theory of vortex breakdown.J. Fluid Mech. 28, 65–84.

    Google Scholar 

  • Blennerhassett, P. J. (1980). On the generation of waves of wind.Philos. Trans. Roy. Soc. Lond. Ser. A 298, 451–494.

    Google Scholar 

  • Constantin, P., Foias, C., Nicolaenko, B., and Temam, R. (1988).Integral and Inertial Manifolds for Dissipative Partial Differential Equations, Applied Mathematical Science Service, Vol. 70; Springer-Verlag, New York.

    Google Scholar 

  • Debussche, A., and Marion, M. (1991). On the construction of families of approximate inertial manifolds.J. Diff. Eq. (in press).

  • Foias, C., Manley, O., and Temam, R. (1988a). Modefling of the interaction of small and large eddies in two dimensional turbulent flows.Math. Model. Numer. Anal. 22, 93–118.

    Google Scholar 

  • Foias, C., Nicolaenko, B., Sell, G., and Temam, R. (1988b). Inertial manifolds for the Kuramoto Sivashinsky equation and an estimate of their lowest dimension.J. Math. Pures Appl. 67, 197–226.

    Google Scholar 

  • Foias, C., Sell, G., and Temam, R. (1988c). Inerital Manifolds for nonlinear evolution equations.J. Diff. Eq. 73, 309–353.

    Google Scholar 

  • Ghidaglia, J. M., and Héron, B. (1987). Dimension of the attractors associated to the Ginzburg-Landau partial differential equation.Physica 28D, 282–304.

    Google Scholar 

  • Haken, H. (1983).Advanced Synergetics, Springer-Verlag, New York.

    Google Scholar 

  • Jauberteau, F., Rosier, C., and Temam, R. (1989/1990). The nonlinear Galerkin method in computational fluid dynamics.Appl. Numer. Math. 6, 361–370.

    Google Scholar 

  • Maller-Paret, J., and Sell, G. (1988). Inertial manifolds for reaction-diffusion equations in higher space dimension.J. AMS 1, 805–866.

    Google Scholar 

  • Marion, M. (1989). Approximate inertial manifolds for reaction-diffusion equations in high space dimension.J. Dynam. Diff. Eq. 1, 245–267.

    Google Scholar 

  • Marion, M., and Temam, R. (1989). Nonlinear Galerkin methods.SIAM J. Num. Anal. 26(5), 1139–1157.

    Google Scholar 

  • Moon, H. T., Huerre, P., and Redekopp, L. G. (1982). Three frequency motion and chaos in the Ginzburg-Landau equation.Phys. Rev. Lett. 49, 458–460.

    Google Scholar 

  • Moon, H. T., Huerre, P., and Redekopp, L. G. (1983). Transitions to chaos in Ginzburg-Landau equation.Physica 7D, 135–150.

    Google Scholar 

  • Newell, A. C., and Whitehead, J. A. (1969). Finite bandwidth, finite amplitude convection.J. Fluid Mech. 38, 279–304.

    Google Scholar 

  • Nicolaenko, B., Scheureu, B., and Temam, R. (1985). Some global dynamical properties of the Kuramato-Sivashinsky equation: Nonlinear stability and attractors.Physica 16D, 155–183.

    Google Scholar 

  • Nirenberg, L. (1959). On elliptic partial differential equations.Ann. Sc. Norm. Sup. Pisa 13, 116–162.

    Google Scholar 

  • Promislow, K. S. (1990). Induced trajectories and approximate inertial manifolds for the Ginzburg-Landau partial differential equation.Physica D 41, 232–252.

    Google Scholar 

  • Promislow, K. S. (1991). Time analyticity and Gevrey class regularity for the solutions of a class of dissipative partial differential equations.J. Nonlin. Anal. Theory Methods Appl. 16, 959–980.

    Google Scholar 

  • Stuart, J. T., and Di Prima, R. C. (1978). The Eckhaus and Benjamin-Feir resonance mechanisms.Proc. Roy. Soc. London Ser. A 362, 27–41.

    Google Scholar 

  • Temam, R. (1988a).Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York.

    Google Scholar 

  • Temam, R. (1988b). Variétés inertielles approximatives pour les équations de Navier-Stoke bidimensionelle.CRAS 306 (Ser. II), 399–402.

    Google Scholar 

  • Temam, R. (1988c). Dynamical systems, turbulence and the numerical solution of the Navier-Stokes equation. In Dwoyer, D., and Voigt, R. (eds.),Proceedings of the 11'th International Conference on Numerical Methods in Fluid Dynamics, Williamsburg, June, Lecture Notes in Physics, Springer-Verlag, New York.

    Google Scholar 

  • Temam, R. (1989). Attractors for the Navier-Stokes equations: Localization and approximation.J. Fac. Sc. Tokyo Sect. IA 36, 626–647.

    Google Scholar 

  • Titi, E. S. (1988). Une variété approximante de l'attracteur universel des équations de Navier-Stokes, nonlinéaire, de dimension finie.C. R. Acad. Sci. Sér. I Paris 307, 383–385.

    Google Scholar 

  • Titi, E. S. (1990). On approximate inertial manifolds to the Navier-Stokes equations.J. Math. Anal. Appl. 149(2), 540–557.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Promislow, K., Temam, R. Localization and approximation of attractors for the Ginzburg-Landau equation. J Dyn Diff Equat 3, 491–514 (1991). https://doi.org/10.1007/BF01049097

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01049097

Key words

Navigation