Skip to main content
Log in

Atomic versus ionized states in many-particle systems and the spectra of reduced density matrices: A model study

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the spectrum of appropriate reduced density matrices for a model consisting of one quantum particle (“electron”) in a classical fluid (of “protons”) at thermal equilibrium. The quantum and classical particles interact by a shortrange, attractive potential such that the quantum particle can form “atomic” bound states with a single classical particle. We consider two models for the classical component: an ideal gas and the “cell model of a fluid.” We find that when the system is at low density the spectrum of the “electron-proton” pair density matrix has, in addition to a continuous part, a discrete part that is associated with “atomic” bound states. In the high-density limit the discrete eigenvalues disappear in the case of the cell model, indicating the existence of pressure ionization or a Mott effect according to a general criterion for characterizing bound and ionized electron-proton pairs in a plasma proposed recently by M. Girardeau. For the ideal gas model, on the other hand, eigenvalues remain even at high density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Ebeling and W. D. Kraeft,Theory of Bound States and lonization Equilibrium in Plasmas and Solids (Akademie-Verlag, Berlin, 1976); W. D. Kraeft, D. Kremp, W. Ebeling, and G. Ropke,Quantum Statistics of Charged Particle Systems (Akademie-Verlag, Berlin, 1986).

    Google Scholar 

  2. C. Fefferman,Rev. Math. Iberoam. 1:1 (1985).

    Google Scholar 

  3. J. G. Conlon, E. H. Lieb, and H. T. Yau,Commun. Math. Phys. 125:153 (1989).

    Google Scholar 

  4. N. Macris and Ph. A. Martin,J. Stat. Phys. 60:619 (1990).

    Google Scholar 

  5. J. L. Lebowitz and R. E. Penna,J. Chem. Phys. 59:1362 (1973).

    Google Scholar 

  6. W. D. Kraeft, D. Kremp, K. Kilimann, and H. E. De Witt,Phys. Rev. A 42:2340 (1990).

    Google Scholar 

  7. S. Ichimaru, ed.,Strongly Coupled Plasma Physics, Proceedings of the Yamada Conference XXIV (Elsevier, Amsterdam, 1990).

    Google Scholar 

  8. M. D. Girardeau,Phys. Rev. A 41:6935 (1990).

    Google Scholar 

  9. N. Macris, Ph. A. Martin, and J. V. Pule,Helv. Phys. Acta 63:705 (1990).

    Google Scholar 

  10. J. M. H. Levelt and E. G. D. Cohen, inStudies in Statistical Mechanics, Vol. II, J. de Boer and G. E. Uhlenbeck, eds. (North-Holland, Amsterdam, 1964), Chapter 4, p. 142.

    Google Scholar 

  11. M. D. Girardeau, inStrongly Coupled Plasma Physics, Proceedings of the Yamada Conference XXIV, S. Ichimaru, ed. (Elsevier, Amsterdam, 1990).

    Google Scholar 

  12. H. Kunz and B. Souillard,Commun. Math. Phys. 78:201 (1980); I. M. Lifshits and L. A. Pastur,Introduction to the Theory of Disordered Systems (Wiley, New York,1988).

    Google Scholar 

  13. B. Simon,Functional Integration and Quantum Physics (Academic Press, 1979).

  14. T. Kato,Perturbation Theory for Linear Operators (Springer-Verlag, 1984).

  15. H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon,Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry (Springer-Verlag, 1987).

  16. M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. IV,Analysis of Operators (Academic Press, 1978).

  17. M. Klaus,Helv. Phys. Acta 55:49 (1982).

    Google Scholar 

  18. M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. II,Fourier Analysis, Self Adjointness (Academic Press, 1975).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebowitz, J.L., Macris, N. & Martin, P.A. Atomic versus ionized states in many-particle systems and the spectra of reduced density matrices: A model study. J Stat Phys 67, 909–956 (1992). https://doi.org/10.1007/BF01049005

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01049005

Key words

Navigation