Skip to main content
Log in

Floquet spectrum for two-level systems in quasiperiodic time-dependent fields

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the time evolution ofN-level quantum systems under quasiperiodic time-dependent perturbations. The problem is formulated in terms of the spectral properties of a quasienergy operator defined in an enlarged Hilbert space, or equivalently of a generalized Floquet operator. We discuss criteria for the appearance of pure point as well as continuous spectrum, corresponding respectively to stable quasiperiodic dynamics and to unstable chaotic behavior. We discuss two types of mechanisms that lead to instability. The first one is due to near resonances, while the second one is of topological nature and can be present for arbitrary ratios between the frequencies of the perturbation. We treat explicitly an example of this type. The stability of the pure point spectrum under small perturbations is proven using KAM techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Casati, B. V. Chirikov, F. M. Izrailev, and J. Ford,Lecture Notes in Physics, Vol. 93 (Springer-Verlag, Berlin, 1979).

    Google Scholar 

  2. G. Casati and L. Molinari,Prog. Theor. Phys. Suppl. 98:287 (1989).

    Google Scholar 

  3. G. Casati and I. Guarneri,Commun. Math. Phys. 95:121 (1984).

    Google Scholar 

  4. G. A. Hagedorn, M. Loss, and J. Slawny,J. Phys. A 19:521 (1986).

    Google Scholar 

  5. M. Combescure,Ann. Inst. H. Poincaré 44:293 (1986);Ann. Phys. 173:210 (1987).

    Google Scholar 

  6. C.-A. Pillet,Commun. Math. Phys. 102:237 (1985);105:259 (1986).

    Google Scholar 

  7. M. Samuelides, R. Fleckinger, L. Touzillier, and J. Bellissard,Europhys. Lett. 1:203 (1986).

    Google Scholar 

  8. Y. Pomeau, B. Dorizzi, and B. Grammaticos,Phys. Rev. Lett. 56:681 (1986).

    Google Scholar 

  9. R. Badii and P. F. Meier,Phys. Rev. Lett. 58:1045 (1987).

    Google Scholar 

  10. P. W. Miloni, J. R. Ackerhalt, and M. E. Goggin,Phys. Rev. A 35:1714 (1987).

    Google Scholar 

  11. J. M. Luck, H. Orland, and Smilansky,J. Stat. Phys. 53:551 (1988).

    Google Scholar 

  12. D. L. Shepelyansky,Physica 8D:208 (1983).

    Google Scholar 

  13. M. Combescure,J. Stat. Phys. 62:779 (1991); and preprint, Orsay (1991).

    Google Scholar 

  14. L. Bunimovich, H. R. Jauslin, J. L. Lebowitz, A. Pellegrinotti, and P. Nielaba,J. Stat. Phys. 62:793 (1991).

    Google Scholar 

  15. J. S. Howland,Math. Ann. 207:315 (1974);Indiana Univ. Math. J. 28:471 (1979).

    Google Scholar 

  16. J. S. Howland,Ann. Inst. H. Poincaré 49:309, 325 (1989).

    Google Scholar 

  17. C. Piron,Foundations of Quantum Physics (Benjamin, Reading, Massachusetts, 1976); C. Flesia and C. Piron,Helv. Phys. Acta 57:697 (1984).

    Google Scholar 

  18. K. Yajima,Commun. Math. Phys. 87:331 (1982).

    Google Scholar 

  19. V. Enss and K. Veselic,Ann. Inst. H. Poincaré A 39:159 (1983).

    Google Scholar 

  20. J. Bellissard, inStochastic Processes in Classical and Quantum Systems, S. Albeverio, G. Casati, and D. Merlini, eds. (Springer, 1986).

  21. H. R. Jauslin and J. L. Lebowitz,Chaos 1:114 (1991).

    Google Scholar 

  22. J. E. Bayfield and P. M. Koch,Phys. Rev. Lett. 33:258 (1974).

    Google Scholar 

  23. S. Yücel and E. Andrei,Phys. Rev. B 42:2088 (1990);43:12029 (1991).

    Google Scholar 

  24. J. Bellissard, inTrends in the Eighties, S. Albeverio and Ph. Blanchard, eds. (World Scientific, Singapore, 1985).

    Google Scholar 

  25. V. I. Arnold and A. Avez,Problèmes ergodiques de la mécanique classique (Gauthier-Villars, Paris, 1967).

    Google Scholar 

  26. R. J. Zimmer,Ergodic Theory and Semisimple Groups (Birkhäuser, Basel, 1984).

    Google Scholar 

  27. M. Rychlik, Renormalization of cocycles and linear ODE with almost-periodic coefficients,Inv. Math. (1992), to appear.

  28. L. Amerio and G. Prouse,Almost-Periodic Functions and Functional Equations (van Nostrand Reinhold, New York, 1971).

    Google Scholar 

  29. B. M. Levitan and V. V. Zhikov,Almost-Periodic Functions and Differential Equations (Cambridge University Press, Cambridge, 1982).

    Google Scholar 

  30. H. Kesten,Acta Arithmet. 12:193 (1966).

    Google Scholar 

  31. T. Kato,Perturbation Theory for Linear Operators (Springer, Berlin, 1980).

    Google Scholar 

  32. J. Bellissard, inChaotic Behavior in Quantum Systems, G. Casati, ed. (Plenum Press, 1985).

  33. M. Combescure,Ann. Inst. H. Poincaré 47:63 (1987);Ann. Phys. 185:86 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blekher, P.M., Jauslin, H.R. & Lebowitz, J.L. Floquet spectrum for two-level systems in quasiperiodic time-dependent fields. J Stat Phys 68, 271–310 (1992). https://doi.org/10.1007/BF01048846

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048846

Key words

Navigation