Skip to main content
Log in

A prepared pattern with wavelength selection in directional solidification

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

As crystal growth is a vital link in the long chain of processes leading to state-of-the-art technological devices, a great deal is known about patterns formed at the solid-liquid interface of a growing crystal. However, some basic questions are still unanswered concerning macroscopic features exhibited by a moving solid-liquid interface. Even for the first instability, the cellular instability, a unique steady-state wavelength λ does not emerge from theory. Furthermore, while wavelength selection is observed in many different materials, its origin is still to be discovered. By breaking continuous rotational symmetry of the flat solid-liquid interface about the pulling direction v, we prepared a cellular pattern with a well-defined wavelength by front propagation into the unstable uniform state. The material is succinonitrile and the rectangular interface geometry is formed by loading it into a flat capillary. The capillaries are chosen to provide a sample thicknessy 0 = 100μn ∼λ, and width 10y 0 and 20y 0. We use a high-resolution directional solidification apparatus and grow the crystal from grain-boundary-free seed crystals. Surprisingly, the shape of the groove next to the uniform state is initially well-described by nearly self-similar Gaussians. This suggests that the initial perturbation of the interface is localized to a region λ/2 around a groove. A pattern with a well-defined wavelength is established when the half-width of the Gaussians ξ0∼16μm is small compared to λ∼80μm so there is little overlap between a groove and its predecessor or successor. When overlap is significant, the pattern is time-dependent. These results suggest that wavelength selection in this prepared pattern is a consequence of front propagation of a localized perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Langer,Rev. Mod. Phys. 52:1 (1980); inChance and Matter, J. Souletie, J. Vannimenus, and R. Stora, eds. (Elsevier, New York, 1986), p. 629;Science 243:1150 (1989).

    Google Scholar 

  2. Pierre Pelcé, ed.,Dynamics of Curved Interfaces (Academic Press, New York, 1988).

    Google Scholar 

  3. J. E. Wesfreid, H. R. Brand, P. Manneville, G. Albinet, and N. Boccara, eds.,Les Houches 1987, Propagation in Systems far from Equilibrium (Springer-Verlag, 1988); F. Busse and L. Kramer, eds.,Non-linear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems (Plenum Press, New York, 1990); D. Walgraef and N. Ghoniem (eds.),Defects, Patterns and Instabilities (Kluwer Academic Publishers, 1990); Lui Lam and Hedley C. Morris, eds.,Non-linear Structures in Physical Systems—Pattern Formation, Chaos and Waves (Springer-Verlag, 1990).

  4. P. Pfeuty and G. Toulouse,Introduction to the Renormalization Group and to Critical Phenomena (Wiley, New York, 1977).

    Google Scholar 

  5. P. C. Hohenberg and M. C. Cross, inFluctuations and Stochastic Phenomena in Condensed Matter, L. Garrido, ed. (Springer-Verlag, Berlin, 1987).

    Google Scholar 

  6. W. Bascom,Waves and Beaches, the Dynamics of the Ocean Surface (Doubleday, New York, 1980).

    Google Scholar 

  7. J. D. Legrange,Phys. Rev. Lett. 66:37(1991); J. E. Riegler and J. D. Legrange,Phys. Rev. Lett. 61:2492 (1988).

    Google Scholar 

  8. S. M. Troian, E. Herbolzheimer, and S. A. Safran,Phys. Rev. Lett. 65:333 (1990).

    Google Scholar 

  9. J. Bechhoefer and A. Libchaber,Phys. Rev. B 35:1393 (1987); P. Oswald, J. Bechhoefer, and A. Libchaber,Phys. Rev. Lett. 58:2318 (1987); A. J. Simon, J. Bechhoefer, and A. Libchaber,Phys. Rev. Lett. 61:2574 (1988).

    Google Scholar 

  10. P. G. Saffman and G. I. Taylor,Proc. R. Soc. Lond. A 245:312 (1958).

    Google Scholar 

  11. M. Rabaud, S. Michalland, and Y. Couder,Phys. Rev. Lett. 64:184 (1990).

    Google Scholar 

  12. B. R. Pamplin, ed.,Crystal Growth (Pergamon, Oxford, 1980).

    Google Scholar 

  13. Ph. Bouissou, A. Chiffaudel, B. Perrin, and P. Tabeling,Europhysics Lett. 13:89 (1990); Phillippe Bouissou, thesis, Ecole Normale Supérieure, Paris (1989).

    Google Scholar 

  14. A. Dougherty, P. D. Kaplan, and J. P. Gollub,Phys. Rev. Lett. 58:1652 (1987).

    Google Scholar 

  15. A. Schenzle and H. R. Brand,Phys. Rev. A 20:1628 (1979).

    Google Scholar 

  16. R. J. Deissler and H. R. Brand,Phys. Lett. A 130:293 (1988); R. J. Deissler,J. Stat. Phys. 54:1459 (1989);Physica D 25:233 (1987).

    Google Scholar 

  17. K. A. Jackson and J. D. Hunt,Acta Met. 13:1212 (1965).

    Google Scholar 

  18. W. W. Mullins and R. F. Sekerka,J. Appl. Phys. 34:323 (1963);35:444 (1964).

    Google Scholar 

  19. J. D. Hunt and K. A. Jackson,Trans. Met. Soc. AIME 236:843, 1129 (1966).

    Google Scholar 

  20. K. A. Jackson, inMaterial Science Research, Vol. 4, Chapter 12 (Plenum Press, New York, 1969);J. Crystal Growth 24/25:130 (1974).

    Google Scholar 

  21. H. Levine, inDefects, Patterns and Instabilities, D. Walgraef and N. Ghoniem (eds.). (Kluwer Academic Publishers, 1990).

  22. J. D. Weeks and W. van Saarloos,Phys. Rev. A 42:5056 (1990).

    Google Scholar 

  23. W. Kurz and D. J. Fisher,Fundamentals of Solidification, 3rd rev. ed. (Trans Tech Publications, Vermont, 1989).

    Google Scholar 

  24. A. Karma,Phys. Rev. Lett. 57:858 (1986); T. Dombre and V. Hakim,Phys. Rev. A 36:2811 (1987); M. Ben-Amar and P. Moussallam,Phys. Rev. Lett. 60:317 (1988); C. Misbah,J. Phys. (Paris) 50:971 (1989); K. Tsiveriotis and R. A. Brown,Phys. Rev. Lett. 63:2048 (1989).

    Google Scholar 

  25. D. J. Wollkind and L. A. Segel,Phil. Trans. R. Soc. Lond. 51:268 (1970).

    Google Scholar 

  26. J. S. Langer and L. A. Turski,Acta Met. 24:1113 (1977); J. S. Langer,Acta Met. 25:1121 (1977); G. Dee and R. Mathur,Phys. Rev. 27:7073 (1983).

    Google Scholar 

  27. M. A. Eshelman and R. Trivedi,Acta Met. 35:2443 (1987).

    Google Scholar 

  28. P. E. Cladis, J. T. Gleeson, and P. L. Finn, inDefects, Patterns and Instabilities, D. Walgraef and N. Ghoniem (eds.). (Kluwer Academic Publishers, 1990).

  29. G. Dee and J. S. Langer,Phys. Rev. Lett. 50:383 (1983).

    Google Scholar 

  30. P. E. Cladis, J. T. Gleeson, and P. L. Finn,Phys. Rev. Lett., submitted.

  31. L. Kramer, E. Ben-Jacob, H. R. Brand, and M. C. Cross,Phys. Rev. Lett. 49:1891 (1982); see also L. Kramer and P. C. Hohenberg,Cellular Structures in Instabilities, J. E. Wesfreid and S. Zaleski, eds. (Springer-Verlag); L. Kramer and H. Riecke,Z. Phys. B 50:245 (1985).

    Google Scholar 

  32. P. Coullet, R. E. Goldstein, and G. H. Gunaratne,Phys. Rev. Lett. 63:1954 (1989); R. E. Goldstein, G. H. Gunaratne, L. Gil, and P. Coullet. Hydrodynamic and interfacial patterns with broken space-time symmetry (preprint 5/1990).

    Google Scholar 

  33. P. E. Cladis, J. T. Gleeson, and P. L. Finn, inNon-linear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems, F. Busse and L. Kramer, eds. (Plenum Press, New York, 1990); also inNon-linear Structures in Physical Systems—Pattern Formation, Chaos and Waves, Lui Lam and Hedley C. Morris, eds. (Springer-Verlag, 1990).

    Google Scholar 

  34. M. A. Chopra, M. E. Glicksman, and N. B. Singh,J. Cryst. Growth 543:543 (1988).

    Google Scholar 

  35. B. Caroli, C. Caroli, and B. Roulet,J. Phys. (Paris) 43:1767 (1982).

    Google Scholar 

  36. J. T. Gleesonet al., unpublished.

  37. W. van Saarloos,Phys. Rev. A 39:6367 (1990) and references therein.

    Google Scholar 

  38. P. Kurowski, C. Guthmann, and S. de Cheveigné,Phys. Rev. A 42:7368 (1990); P. Kurowski, Thesis, University of Paris VII (1990).

    Google Scholar 

  39. J. T. Gleeson, P. L. Finn, and P. E. Cladis,Phys. Rev. Lett. 66:236 (1991).

    Google Scholar 

  40. J. D. Weeks and W. van Saarloos,Phys. Rev. A 39:2772 (1989); J. D. Hunt,Solidification and Casting of Metals (Metals Society, London, 1979).

    Google Scholar 

  41. S. de Cheveigné, C. Guthmann, and M. M. Lebrun,J. Phys. (Paris) 47:2095 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cladis, P.E. A prepared pattern with wavelength selection in directional solidification. J Stat Phys 64, 1103–1119 (1991). https://doi.org/10.1007/BF01048817

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048817

Key words

Navigation