Skip to main content
Log in

Patterns at the onset of electroconvection in freely suspended smectic films

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We report the results of experiments on electrically driven convection that occurs in a thin, freely suspended film of smectic A liquid crystal when an electric field is applied in the plane of the film. Convection in a vortex pattern is found above a well-defined critical voltage. The film behaves as a two-dimensional isotropic liquid: neither its thickness nor the director field are modified by the flow. We present measurements of the critical voltage at the onset of convection in two experimental configurations—one which allows the injection of charges into the film from the electrodes, and one which does not. When injection is present, the critical voltage for the onset of flow increases monotonically with increasing frequency of applied field. With no injection, there is no instability at DC and the critical voltage diverges there. The nature of the flow pattern observed at onset changes with frequency. Below a certain frequency the film flows in vortices that extend over the width of the film; above this frequency the flow is confined to two lines of smaller vortices localized along the electrodes. We present a simple discussion of the mechanisms which drive the convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ahlers, inLectures in the Sciences of Complexity, D. Stein, ed. (Addison-Wesley, Reading, Massachusetts, 1989).

    Google Scholar 

  2. F. Busse, inHydrodynamic Instabilities and the Onset of Turbulence, H. L. Swinney and J. P. Gollub, eds. (Springer, Berlin, 1984).

    Google Scholar 

  3. R. C. DiPrima and H. L. Swinney, inHydrodynamic Instabilities and the Onset of Turbulence, H. L. Swinney and J. P. Gollub, eds. (Springer, Berlin, 1984).

    Google Scholar 

  4. I. Rehberg, B. Winkler, M. de la Torre Juarez, S. Rasenat, and W. Schöpf, inFestkörperprobleme/Advances in Solid State Physics, U. Rössler, ed. (Vieweg, Braunschweig, 1989).

    Google Scholar 

  5. E. Dubois-Violette, P. G. de Gennes, and O. Parodi,J. Phys. (Paris)32:305 (1971).

    Google Scholar 

  6. P. G. de Gennes,The Physics of Liquid Crystals (Clarendon Press, Oxford, 1979).

    Google Scholar 

  7. L. M. Blinov,Electro-Optical and Magneto-Optical Properties of Liquid Crystals (Wiley, New York, 1983).

    Google Scholar 

  8. W. Helfrich,J. Chem. Phys. 51:4092 (1969).

    Google Scholar 

  9. E. Bodenschatz, W. Zimmermann, and L. Kramer,J. Phys. (Paris)49:1875 (1988).

    Google Scholar 

  10. S. W. Morris, J. R. de Bruyn, and A. D. May, inNonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems, F. Busse and L. Kramer, eds. (Plenum Press, New York, 1990).

    Google Scholar 

  11. S. W. Morris, J. R. de Bruyn, and A. D. May,Phys. Rev. Lett. 65:2378 (1990).

    Google Scholar 

  12. A. J. Leadbetter, J. C. Frost, J. P. Gaughan, G. W. Gray, and A. Mosly,J. Phys. (Paris)40:375 (1979).

    Google Scholar 

  13. L. Léger and A. Martinet,J. Phys. (Paris)37:C3–89 (1976).

    Google Scholar 

  14. R. G. Horn and M. Kléman,Ann. Phys. 3:229 (1978).

    Google Scholar 

  15. G. Friedel,Ann. Phys. (Paris)18:273 (1922).

    Google Scholar 

  16. R. Pindak and D. Moncton,Phys. Today 35(5):57 (1982).

    Google Scholar 

  17. D. A. Dunmur, M. R. Manterfield, W. H. Miller, and J. K. Dunleavy,Mol. Cryst. Liq. Cryst. 46:127 (1978).

    Google Scholar 

  18. S. Faetti, L. Fronzoni, and P. A. Rolla,J. Phys. (Paris)40:C3–497 (1979).

    Google Scholar 

  19. S. Faetti, L. Fronzoni, and P. A. Rolla,J. Chem. Phys. 79:1427 (1983).

    Google Scholar 

  20. S. Faetti, L. Fronzoni, and P. A. Rolla,J. Chem. Phys. 79:5054 (1983).

    Google Scholar 

  21. N. Felici,Rev. Gen. Elect. 78:717 (1969);J. Phys. (Paris)37:C1–117 (1976).

    Google Scholar 

  22. J. M. Schnieder and P. K. Watson,Phys. Fluids 18:1948 (1970).

    Google Scholar 

  23. P. Atten and R. Moreau,J. Mécanique 11:471 (1972).

    Google Scholar 

  24. J. C. Lacroix, P. Atten, and E. J. Hopfinger,J. Fluid Mech. 69:539 (1975).

    Google Scholar 

  25. J. C. Lacroix and P. Atten,C. R. Acad. Sci. 278A:689 (1974);J. Electrostatics 5:453 (1978).

    Google Scholar 

  26. P. Atten and J. C. Lacroix,J. Mécanique 18:469 (1979);J. Electrostatics 5:439 (1978).

    Google Scholar 

  27. R. J. Turnbull,J. Phys. D 6:1746 (1973).

    Google Scholar 

  28. R. Bruinsma and S. Alexander,J. Chem. Phys. 92:3074 (1990).

    Google Scholar 

  29. P. Atten, B. Malraison, and S. Ali Kani,J. Electrostatics 12:477 (1982).

    Google Scholar 

  30. M. I. Barnik, L. M. Blinov, S. A. Pikin, and A. N. Trufanov,Sov. Phys. JETP 45:396 (1977).

    Google Scholar 

  31. R. Cocco, F. Gaspard, and R. Herino,J. Chim. Phys. 76:383 (1979).

    Google Scholar 

  32. R. Foster,Organic Charge Transfer Complexes (Academic Press, New York, 1969).

    Google Scholar 

  33. M. Born and E. Wolf,Principles of Optics (Pergamon Press, New York, 1980).

    Google Scholar 

  34. C. Rosenblatt and N. Amer,Appl. Phys. Lett. 36:432 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, S.W., de Bruyn, J.R. & May, A.D. Patterns at the onset of electroconvection in freely suspended smectic films. J Stat Phys 64, 1025–1043 (1991). https://doi.org/10.1007/BF01048812

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048812

Key words

Navigation