Skip to main content
Log in

Novel states in Taylor-Couette flow subjected to a Coriolis force

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present experimental results for Taylor-Couette flow subjected to a Coriolis force. We used an apparatus consisting of two concentric cylinders with the inner one rotating, and with a radius ratio near 0.75. It was mounted with its axis horizontal on a table which rotated with angular velocityΩ about a vertical axis. For sufficiently lowΩ, the first bifurcation upon increasing the inner-cylinder rotation rate ω was to tilted vortices. With further increase in ω this bifurcation was followed by a secondary one to time-periodic tilted vortices. The two bifurcation lines met at higherΩ. The initial bifurcation then became one to tilted traveling vortices. For even larger values ofΩ, the flow immediately above the initial transition was disordered, and for sufficiently largeΩ the initial bifurcation was to a featureless turbulent state. We studied these transitions with three different outer cylinders. Two had symmetric spatial ramps terminating both ends of a straight section to reduce the effect of the rigid, nonrotating ends, and one had no ramps. The transition to featureless turbulence in the apparatus with ramps became hysteretic over a range ofΩ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lord Rayleigh,Phil. Mag. 32:529 (1916).

    Google Scholar 

  2. H. Bénard,Rev. Gen. Sci. Pure Appl. 11:1261, 1309 (1900);Ann. Chim. Phys. 23:62 (1901).

    Google Scholar 

  3. E. L. Koschmieder,Adv. Chem. Phys. 26:177 (1974); E. L. Koschmieder,Order and Fluctuations in Equilibrium and Nonequilibrium Statistical Mechanics, XVIIth International Solvay Conference, G. Nicolis, G. Dewel, and J. W. Turner, eds. (Wiley, New York, 1981), p. 168; F. Busse, inHydrodynamic Instabilities and the Transition to Turbulence, H. L. Swinney and J. P. Gollub, eds. (Springer, Berlin, 1984), p. 97; F. Busse,Rep. Prog. Phys. 41:1929 (1978).

    Google Scholar 

  4. S. Chandrasekhar,Hydrodynamic and Hydromagnetic Stability (Oxford University Press, London, 1961).

    Google Scholar 

  5. G. Küppers and D. Lortz,J. Fluid Mech. 35:609 (1969).

    Google Scholar 

  6. R. M. Clever and F. H. Busse,J. Fluid Mech. 94:609 (1979).

    Google Scholar 

  7. F. H. Busse and K. E. Heikes,Science 208:173 (1980).

    Google Scholar 

  8. K. Bühler and H. Oertel,J. Fluid Mech. 114:261 (1982).

    Google Scholar 

  9. P. G. J. Lucas, J. M. Pfotenhauer, and R. J. Donnelly,J. Fluid Mech. 129:251 (1983).

    Google Scholar 

  10. J. M. Pfotenhauer, J. J. Niemela, and R. J. Donnelly,J. Fluid Mech. 175:85 (1987).

    Google Scholar 

  11. G. I. Taylor,Phil. Trans. R. Soc. Lond. A 223:289 (1923).

    Google Scholar 

  12. R. C. DiPrima and H. L. Swinney, inHydrodynamic Instabilities and Transitions to Turbulence, H. L. Swinney and J. P. Gollub, eds. (Springer, Berlin, 1981).

    Google Scholar 

  13. D. Coles,J. Fluid Mech. 21:385 (1965); H. A. Snyder,J. Fluid Mech. 35:273 (1969); J. E. Burkhalter and E. L. Koschmieder,Phys. Fluids 17:1929 (1974).

    Google Scholar 

  14. A. Mallock,Proc. R. Soc. 1888(13 December), 126;Phil. Trans. R. Soc. Lond. A 187:41 (1895); M. M. Couette,Compt. Rend. 107:388 (1888);Ann. Chem. Phys. VI 21:433 (1890).

  15. R. J. Wiener, P. W. Hammer, C. E. Swanson, and R. J. Donnelly,Phys. Rev. Lett. 64:1115 (1990).

    Google Scholar 

  16. R. J. Wiener, P. W. Hammer, C. E. Swanson, D. C. Samuels, and R. J. Donnelly,J. Stat. Phys., this issue.

  17. R. J. Wiener, P. W. Hammer, C. E. Swanson, and R. J. Donnelly, private communication.

  18. H. R. Brand, private communication.

  19. R. J. Wiener, private communication.

  20. L. Ning, M. Tveitereid, G. Ahlers, and D. S. Cannell,Phys. Rev. A., in press.

  21. L. Ning, G. Ahlers, D. S. Cannell, and M. Tveitereid,Phys. Rev. Lett. 66, 1575 (1991).

    Google Scholar 

  22. D. S. Cannell, M. A. Dominguez-Lerma, and G. Ahlers,Phys. Rev. Lett. 50:1365 (1983).

    Google Scholar 

  23. M. A. Dominguez-Lerma, D. S. Cannell, and G. Ahlers,Phys. Rev. A 34:4956 (1986).

    Google Scholar 

  24. G. Ahlers, D. S. Cannell, M. A. Dominguez-Lerma, and R. Heinrichs,Physica 23D:202 (1986).

    Google Scholar 

  25. P. Matisse and M. Gorman,Phys. Fluids 27:759 (1984).

    Google Scholar 

  26. M. A. Dominguez-Lerma, Ph.D. Thesis, University of California at Santa Barbara (1986).

  27. M. A. Dominguez-Lerma, G. Ahlers, and D. S. Cannell,Phys. Fluids 27:856 (1984).

    Google Scholar 

  28. H. Riecke and H. G. Paap,Phys. Rev. Lett. 59:2570 (1987).

    Google Scholar 

  29. L. Ning, G. Ahlers, and D. S. Cannell,Phys. Rev. Lett. 64:1235 (1990).

    Google Scholar 

  30. G. Ahlers, D. S. Cannell, and M. A. Dominguez-Lerma,Phys. Rev. A 27:1225 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ning, L., Ahlers, G. & Cannell, D.S. Novel states in Taylor-Couette flow subjected to a Coriolis force. J Stat Phys 64, 927–944 (1991). https://doi.org/10.1007/BF01048805

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048805

Key words

Navigation