Glycoconjugate Journal

, Volume 5, Issue 1, pp 75–84 | Cite as

Saccharide binding to three Gal/GalNAc specific lectins: Fluorescence, spectroscopic and stopped-flow kinetic studies

  • M I Khan
  • M Joginadha Swamy
  • M V Krishna Sastry
  • S Umadevi Sajjan
  • S R Patanjali
  • Prasad Rao
  • G V Swarnalatha
  • P Banerjee
  • A Surolia
Article

Abstract

Fluorescence and stopped-flow spectrophotometric studies on three plant lectins fromPsophocarpus tetragonolobus (winged bean),Glycine max (soybean) andArtocarpus integrifolia (jack fruit) have been studied usingN-dansylgalactosamine as a fluorescent ligand. The best monosaccharide for the winged bean agglutinin I (WBA I) and soybean (SBA) is Me-αGalNAc and for jack fruit agglutinin (JFA) is Me-αGal. Examination of the percentage enhancement and association constants (1.51×106, 6.56×106 and 4.17×105 M−1 for SBA, WBA I and JFA, respectively) suggests that the combining regions of the lectins SBA and WBA I are apolar whereas that of JFA is polar. Thermodynamic parameters obtained for the binding of several monosaccharides to these lectins are enthalpically favourable. The binding of monosaccharides to these lectins suggests that the-OH groups at C-1, C-2, C-4 and C-6 in thed-galactose configuration are important loci for interaction with these lectins. An important finding is that the JFA binds specifically to Galß1-3GaINAc with much higher affinity than the other disaccharides which are structurally and topographically similar.

The results of stopped-flow spectrometry on the binding ofN-dansylgalactosamine to these lectins are consistent with a bimolecular single step mechanism. The association rate constants (2.4×105, 1.3×104, and 11.7×105 M−1 sec−1 for SBA, WBA I and JFA, respectively) obtained are several orders of magnitude slower than the ones expected for diffusion controlled reactions. The dissociation rate constants (0.2, 3.2×10−2, 83.3 sec−1 for SBA, WBA I and JFA, respectively) obtained for the dissociation ofN-dansylgalactosamine from its lectin complex are slowest for SBA and WBA I when compared with any other lectin-ligand dissociation process.

Key words

lectin sugar binding fluorescent ligand 

Abbreviations

SBA

Soybean agglutinin

WBA I

Winged bean agglutinin (Basic)

JFA

Jack fruit agglutinin

PNA

Peanut agglutinin

Con A

Concanavalin A

Dansyl (Dns)

5-dimethylaminonaphthalene-I-sulphonyl

2GaINDns

N-dansylgalactosamine

dGal

2-deoxygalactose

l-Ara

l-arabinose

d-Fuc

d-fucose

l-Rha

l-rhamnose

N-acetyllactosamine

Galß4GlcNAc

melibiose

Galα6Glc

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lis H, Sharon N (1986), Annu Rev Biochem 55:35–67.Google Scholar
  2. 2.
    Lis H, Sharon N (1984) in Biology of Carbohydrates, Vol 2, eds. Ginsburg V, Robbins PW, Wiley, New York, p 1–85.Google Scholar
  3. 3.
    Goldstein IJ, Hayes CE (1978) Adv Carbohydr Chem Biochem 35:127–40.Google Scholar
  4. 4.
    Etzler ME (1985) Annu Rev Plant Physiol 36:235–53.Google Scholar
  5. 5.
    Khan MI, Krishna Sastry MV, Surolia A (1986) J Biol Chem 261:3013–19.Google Scholar
  6. 6.
    Gordon JA, Blumberg S, Lis H, Sharon N (1972) Methods Enzymol 28:365–68.Google Scholar
  7. 7.
    Suresh Kumar G, Appukuttan PS, Debkumar B (1982) J Biosci 4:257–61.Google Scholar
  8. 8.
    Sarkar M, Kabat EA (1979) Carbohydr Res 69:143–49.Google Scholar
  9. 9.
    Flowers HM, Shapiro D (1965) J Org Chem 30:2041–43.Google Scholar
  10. 10.
    Flowers HM, Jeanloz RW (1963) J Org Chem 28:1377–81.Google Scholar
  11. 11.
    Swamy MJ, Krishna Sastry, MV, Khan MI, Surolia A (1986) Biochem J 234:515–22.Google Scholar
  12. 12.
    Lotan R, Siegelman HW, Lis H, Sharon N (1974) J Biol Chem 249:1219–24.Google Scholar
  13. 13.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–75.Google Scholar
  14. 14.
    Krishna Sastry MV, Banerjee P, Patanjali SR, Swamy MJ, Swarnalatha GV, Surolia A (1986) J Biol Chem 261:11726–33.Google Scholar
  15. 15.
    De Boeck H, Lis H, van Tilbeurgh H, Sharon N, Loontiens FG (1984) J Biol Chem 259:7064–74.Google Scholar
  16. 16.
    Chipman DM, Grisaro V, Sharon N (1967) J Biol Chem 242:4388–94.Google Scholar
  17. 17.
    Bessler W, Shafer JA, Goldstein IJ (1974) J Biol Chem 249:2819–22.Google Scholar
  18. 18.
    Khan MI, Mazumdar T, Pain D, Gaur N, Surolia A (1981) Eur J Biochem 113:471–76.Google Scholar
  19. 19.
    Laidler KJ (1979) Theories of Chemical Reaction Rates, RE Krieger Publishing Co, Huntington, p 41–55.Google Scholar
  20. 20.
    Chen RF (1967) Arch Biochem Biophys 120:609–20.Google Scholar
  21. 21.
    De Boeck H, Loontiens FG, Lis H, Sharon N (1984) Arch Biochem Biophys 254:297–304.Google Scholar
  22. 22.
    Harington PC, Moreno R, Wilkins RG (1981) Isr J Chem 21:48–51.Google Scholar
  23. 23.
    Neurohr KJ, Mantsch HH, Young M, Bundle DR (1982) Biochemistry 21:498–503.Google Scholar
  24. 24.
    Clegg RM, Loontiens FG, Jovin TM (1977) Biochemistry 16:167–75.Google Scholar
  25. 25.
    Lewis SD, Shafer JA, Goldstein IJ (1976) Arch Biochem Biophys 172:689–95.Google Scholar
  26. 26.
    Podder SK, Surolia A, Bachhawat BK (1978) FEBS Lett 85:313–16.Google Scholar

Copyright information

© Glycoconjugate Journal 1988

Authors and Affiliations

  • M I Khan
    • 1
  • M Joginadha Swamy
    • 1
  • M V Krishna Sastry
    • 1
  • S Umadevi Sajjan
    • 1
  • S R Patanjali
    • 1
  • Prasad Rao
    • 1
  • G V Swarnalatha
    • 1
  • P Banerjee
    • 1
  • A Surolia
    • 1
  1. 1.Molecular Biophysics Unit, U.G.C. Centre for Advanced StudiesIndian Institute of ScienceBangaloreIndia

Personalised recommendations