Skip to main content
Log in

Hadamard design and artificial neural nets

  • Short Communications
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Hadamard theory is shown to play an important role in the generation of Boolean decision functions, a fundamental tool in the field of artificial neural network design. Based on a group-theoretic introduction of a complete set of Hadamard vectors, whose matrices are of the order of a power of two, we classify subsets according to the degree of their linear dependence. We show in the thermodynamic limit that essentially the whole Hadamard space is occupied by representatives with defect not exceeding two or three.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. Hedayat and W. D. Wallis, Hadamard matrices and their applications,Ann. Stat. 6:1184–1237 (1978).

    Google Scholar 

  2. W. K. Pratt, J. Kane, and H. C. Andrees, Hadamard transform image coding,Proc. IEEE 57(1):58–69 (1969).

    Google Scholar 

  3. E. C. Posner, Combinatorial structure in planetary reconnaissance, inProceedings Symposium on Error Correcting Codes (Mathematics Research Center, University of Wisconsin Press, Madison, Wisconsin, 1968).

    Google Scholar 

  4. M. H. Tai, M. Harit, and N. J. A. Sloane, Errors in Hadamard spectroscopy or imaging caused by imperfect masks,Appl. Opt. 14(11):2678–2686 (1975).

    Google Scholar 

  5. D. E. Goldberg, Genetic algorithms and Walsh functions: Part I, A gentle introduction,Complex Syst. 129:129–152 (1989).

    Google Scholar 

  6. O. Krisement, A Hopfield model with Hadamard prototypes,Z. Phys. B 80:415–421 (1990).

    Google Scholar 

  7. R. Folk and A. Kartashov, Equivalence classes of Hadamard pattern sets for Hebbian networks,Neural Network World, submitted.

  8. J. V. Brawley, Jr., and Petr Lisonek, Counting equivalence classes of Hadamard pattern sets by group action methods, RISC-Linz Report Series No. 92-28 (1992).

  9. K. E. Kürten, Information specific design in high-order networks, inComplexity in Physics and Technology, M. S. Garrido and R. Vilela Mendes, eds. (World Scientific, Singapore, 1992), pp. 167–180.

    Google Scholar 

  10. S. Kauffman,J. Theor. Biol. 22:437 (1969).

    Google Scholar 

  11. E. R. Caianiello, Neuronic equations and their solutions, inEvolution, Learning and Cognition, Y. C. Lee, ed. (World Scientific, Singapore, 1988).

    Google Scholar 

  12. R. D. Carmichael,Introduction to the Theory of Groups of Finite Order (Dover, New York).

  13. J. Cigler, Uber die Anzahl erzeugender Mengen in endlichen Vektorräumen,Anz. Öst. Akad. Wiss., in press.

  14. K. E. Kürten, Adaptive architectures for Hebbian network models.J. Phys. I (Paris)2:615–624 (1992).

    Google Scholar 

  15. K. E. Kürten, Optimal dilution of a Hopfield network, inNeurodynamics, F. Pasemann and H. D. Doebner, eds. (World Scientific, Singapore, 1991), pp. 211–221.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kürten, K.E., Klingen, N. Hadamard design and artificial neural nets. J Stat Phys 71, 327–339 (1993). https://doi.org/10.1007/BF01048103

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048103

Key words

Navigation