Skip to main content
Log in

Martin compactification for discrete potential theory and the mean value property

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

A converse of the well-known theorem on themean value property of harmonic functions is given. It is shown that a positive measurable function is harmonic if it possesses arestricted mean value property. Earlier proofs obtained using the probabilistic techniques were given by Veech, Heath and Baxter. Our approach is based on a Martin type compactification built up with the help of some quite elementarya priori inequalities foraveraging kernels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akcoglu M. A. and Sharpe R. V.: ‘Ergodic theory and boundaries’,Trans. Amer. Math. Soc. 132 (1968), pp. 447–460.

    Google Scholar 

  2. Baxter J. R.: ‘Restricted mean values and harmonic functions’,Trans. Amer. Math. Soc. 167 (1972), pp. 451–463.

    Google Scholar 

  3. Baxter J. R.: ‘Harmonic functions and mass cancellation’,Trans. Amer. Math. Soc. 245 (1978), pp. 375–384.

    Google Scholar 

  4. Boboc N., Bucur Gh. and Cornea A.:Order and Convexity in Potential Theory: H-Cones, Lecture Notes in Math. 853, Springer, Berlin, 1981.

    Google Scholar 

  5. Bliedtner J. and Hansen W.:Potential Theory. An Analytic and Probabilistic Approach to Balayage, Universitext, Springer, Berlin, 1986.

    Google Scholar 

  6. Cornea, A.: ‘Finiteness principle and Harnack principle’,Proceedings of ICPT 91, ed. E. Bertin, Kluwer Academic Publishers, Dordrecht 1994.

    Google Scholar 

  7. Constantinescu C. and Cornea A.:Potential Theory on Harmonic Spaces, Grundlehren Bd. 158 Springer, Berlin, 1972.

    Google Scholar 

  8. Health D.: ‘Functions possessing restricted mean value properties’,Proc. Amer. Math. Soc. 41 (1973), pp. 588–595.

    Google Scholar 

  9. Hansen W. and Nadirashvili N.: ‘A converse to the mean value theorem for harmonic functions’,Acta Math. 171 (1993), pp. 139–163.

    Google Scholar 

  10. Helms L. L.:Introduction to Potential Theory, Wiley-Interscience, New York, 1969.

    Google Scholar 

  11. Koebe P.: ‘Herleitung der partiellen Differentialgleichunen der Potentialfunktion aus deren Integraleigenschaft’,Sitzungsber. Berlin. Math. Gessellschaft 5 (1906), pp. 39–42.

    Google Scholar 

  12. Meyer P. A.:Probability and Potentials, Blaisdel Pub. Comp., Waltham, Mass. Toronto London 1966.

    Google Scholar 

  13. Netuka I.: ‘Harmonic functions and mean value theorem’ (in Czech),Časopis Pěst. Mat. 100 (1975), pp. 391–409.

    Google Scholar 

  14. Schaefer H. H.:Topological Vector Spaces, Springer-Verlag, New York, Heidelberg, Berlin, 1980.

    Google Scholar 

  15. Veech W. A.: ‘A zero-one law for a class of random walks and a converse to Gauss' mean value theorem’,Ann. of Math. 97 (1973), pp. 189–216.

    Google Scholar 

  16. Veech W. A.: ‘A converse to the mean value theorem for harmonic functions,Amer. J. Math. 97 (1976), pp. 1007–1027.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornea, A., Veselý, J. Martin compactification for discrete potential theory and the mean value property. Potential Anal 4, 547–569 (1995). https://doi.org/10.1007/BF01048068

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048068

Mathematics Subject Classifications (1991)

Key words

Navigation