Bulletin of Volcanology

, Volume 50, Issue 4, pp 258–278 | Cite as

Landsat Thematic Mapper observations of debris avalanche deposits in the Central Andes

  • P. W. Francis
  • G. L. Wells


Remote sensing studies of the Central Andean volcanic province between 18°–27°S with the Landsat Thematic Mapper have revealed the presence of 28 previously undescribed breached volcanic cones and 14 major volcanic debris avalanche deposits, of which only 3 had previously been identified. Several of the debris avalanche deposits cover areas in excess of 100 km2 and have volumes of the order of 10 km3. H/L ratios for the deposits have a median of 0.1 and a mean of 0.11, values similar to those determined for deposits described in other regions. Surface morphologies commonly include the hummocky topography of small hillocks and enclosed basins that is typical of avalanche deposits, but some examples exhibit smoother surfaces characterised by longitudinal grooves and ridges. These differences may result from the effects of flow confinement by topography or from variations in resistance to shearing in the materials involved. Breached composite cones and debris avalanche deposits tend to occur at right angles to regional tectonic elements, suggesting possible seismic involvement in triggering collapse and providing an additional consideration for assessment of areas at risk from collapse. The low denudation rate in the Central Andes, coupled with the predominance of viscous dacite lavas in volcanic edifices, produces unusually steep cones which may result in a higher incidence of volcano collapse than in other regions. A statistical survey of 578 composite volcanoes in the study area indicates that a majority of cones which achieve edifice heights between 2000–3000 m may undergo sector collapse.


Volcanic Edifice Landsat Thematic Mapper Volcanic Province Volcanic Cone Denudation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bruggen J (1942) Geologia de la puna de San Pedro de Atacama y sus formaciones de areniscas y arcillas rojas. Anales primer Congreso Panamericano de Ingeniera de Minas y Geologia, Tomo 1, 374Google Scholar
  2. Corvalan J (1981) Plate-tectonic map of the circum-Pacific region, southeast quadrant. American Association of Petroleum Geologists: Tulsa, OklahomaGoogle Scholar
  3. Crandell DR, Miller CD, Glicken HX, Christiansen RL, Newhall CG (1984) Catastrophic debris avalanche from ancestral Mount Shasta, California. Geology 12:143–146Google Scholar
  4. Deruelle B (1978a) The Negras de Aras nuee ardente deposits: a cataclysmic eruption of Socompa volcano (Andes of Atacama, north Chile). Bull Volcanol 413:175–186Google Scholar
  5. Deruelle B (1978b) Calc-alkaline and shoshonitic lavas from five Andean volcanoes between latitudes 21°45′ and 24°30′ South and the distribution of Plio-Quaternary volcanism of the south-central and southern Andes. J Volcanol Geotherm Res 3:281–298Google Scholar
  6. Deruelle B, Brousse R (1984) “Nuee ardente” deposits at Tata Sabaya volcano (Bolivian-Chilean Andes): pumices and lava blocks crystallised from a single magma at different depths. Rev Geol Chile 22:3–15Google Scholar
  7. Francis PW, Ramirez CF (1985) “Nuée ardente” deposits at Tata Sabaya volcano: a re-interpretation. Rev Geol Chile 24:107–110Google Scholar
  8. Francis PW, Rundle CC (1976) Rates of production of the main magma types in the Central Andes. Geol Soc Am Bull 87:474–480Google Scholar
  9. Francis P, Self S (1987) Collapsing volcanoes. Sci Am 256:90–97Google Scholar
  10. Francis PW, Roobol MJ, Walker GPL, Cobbold PR, Coward M (1974) San Pedro and San Pablo volcanoes of north Chile and their avalanche deposits. Geol Rdsch 63:357–388Google Scholar
  11. Francis PW, Gardeweg M, Ramirez CT, Rothery DA (1985) Catastrophic debris avalanche deposit of Socompa volcano, northern Chile. Geology 13:600–603Google Scholar
  12. Gardeweg M, Cornejo P, Davidson J (1984) Geologia del volcan Llullaillaco, altiplano de Antofagasta, Chile (Andes Centrales). Rev Geol Chile 23:21–37Google Scholar
  13. Glicken H (1982) Criteria for identification of large volcanic debris avalanches (abstr) EOS Trans Am Geophys Union 63:1141Google Scholar
  14. Hastenrath S, Kutzbach J (1985) Late Pleistocene climate and water budget of the South American Altiplano. Quater Research 24:249–256Google Scholar
  15. Howard KA (1973) Avalanche mode of motion: implications from lunar examples. Science 180:1052–1055Google Scholar
  16. Hsu KJ (1975) Catastrophic debris streams (sturztroms) generated by rockfalls. Geol Soc Am Bull 86:129–140Google Scholar
  17. Katsui Y, Gonzalez O (1968) Geologia del area neovolcanica de los Nevados de Payachata. Univ Chile, Dept Geologia Publ 29Google Scholar
  18. Lucchitta BK (1978) A large landslide on Mars. Geol Soc Am Bull 89:1601–1609Google Scholar
  19. Lucchitta BK (1979) Landslides in Valles Marineris, Mars. J Geophys Res 84:8097–8113Google Scholar
  20. Lucchitta BK (1987) Valles Marineris: Wet debris flows and ground ice. ICARUS 72:411–429Google Scholar
  21. Luhr JF, Carmichael ISE (1982) The Colima volcanic complex, Mexico. III. Ashfall and scoria-fall deposits from the upper slopes of Volcan Volcan Colima. Contrib Mineral Petrol 80:262–275Google Scholar
  22. McSaveney MJ (1978) Sherman Glacier rock avalanche, Alaska, USA. In: B Voight (ed) Rockslides and avalanches, vol 1. Natural phenomena. Elsevier, New York, pp 197–258Google Scholar
  23. Melosh HJ (1979) Acoustic fluidization: a new geological process? J Geophys Res 84:7513–7520Google Scholar
  24. Melosh HJ (1987) The mechanics of large rock avalanches. Geol Soc Am Rev Eng Geol 7:41–49Google Scholar
  25. Naranjo JA (1985) Sulphur flows at Lastarria volcano in the north Chilean Andes. Nature 313:778–780Google Scholar
  26. Naranjo JA, Francis PW (1987) High velocity debris avalanche deposit at Lastarria volcano in the north Chilean Andes. Bull Volcanol 49:509–514Google Scholar
  27. O'Callaghan LJ, Francis PW (1986) Volcanological and petrolgical evolution of San Pedro volcano, provincia El Loa, north Chile. J Geol Soc Lond 143:275–286Google Scholar
  28. Reiche P (1937) The toreva block — a distinctive landslide type. J Geol 45:538–548Google Scholar
  29. Robin C, Boudal C (1984) Une éruption remarquable par son volume: l'evenement de type Saint-Helens du Popocatepetl (Mexique). C R Acad Sc Paris 299:881–886Google Scholar
  30. Servant M, Fontes JC (1978) Les lacs quaternaires de hauts plateaux des Andes premierès interpretations paléoclimatiques. Cahiers de l'OSTROM Ser Geol 10:9–23Google Scholar
  31. Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. J Volcanol Geotherm Res 22:163–197Google Scholar
  32. Siebert L, Glicken H, Ui T (1987) Volcanic hazards from Bezymianny and Bandai-type eruptions. Bull Volcanol 49:435–459Google Scholar
  33. Ui T (1983) Volcanic dry avalanche deposits — identification and comparison with nonvolcanic debris stream deposits. J Volcanol Geotherm Res 18:135–150Google Scholar
  34. Voight B, Glicken H, Janda RJ, Douglass PM (1981) Catastrophic rockslide avalanche of May 18. In: PW Lipman, DR Mullineau (eds) The 1980 eruptions of Mount St. Helens, Washington. US Geol Sur Prof Paper 1250:347–377Google Scholar
  35. Wörner G, Harmon RS, Davidson J, Moorbath S, Turner DL, McMillan N, Nye C, Lopez-Escobar L, Moreno H (1988) The Nevados de Payachata volcanic group (18°S/69°W, N. Chile): geological, geochemical and isotopic observations Bull Volcanol (in press)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • P. W. Francis
    • 1
  • G. L. Wells
    • 1
  1. 1.Lunar and Planetary InstituteHoustonUSA

Personalised recommendations