Skip to main content
Log in

Expression patterns of mRNAs for α-fetoprotein and albumin in the developing rat: the ontogenesis of hepatocyte heterogeneity

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

In developing and normal adult rat liver the expression patterns of the mRNAs for α-fetoprotein (AFP) and albumin (ALB) were analysed byin situ hybridization using specific35S-labelled complementary DNA probes. In the developing liver AFP and ALB mRNA are found from embryonic day (ED) 11 and 12, respectively, onward. At ED 20 the first signs of a zonal distribution of these mRNAs across the liver lobule can be observed, AFP mRNA concentration being higher in the pericentral area and ALB mRNA concentration higher in the periportal area. This distribution pattern of reciprocal, overlapping gradients of mRNA can be clearly recognized in the neonatal period. In the adult liver AFP mRNA can no longer be detected and similar to the neonatal situation, ALB mRNA is expressed across the entire porto-central distance decreasing in concentration going from the portal to the central area.

Transient extra-hepatic expression of AFP mRNA is found in the embryonic heart and in the epithelial lining of intestine and lung furthermore, AFP and ALB mRNA are found to be transiently expressed in the developing renal tubules. Similar expression patterns have been observed for other liver-characteristic mRNAs (Moormanet al., 1990), suggesting that common regulatory factors are operative during development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berenuau, D., Poliard, A. M., Tournier, I., Salatrepat, J. M. &Feldmann, G. (1985) All hepatocytes are involved in the expression of the albumin gene in the normal adult rat: a demonstration byin situ hybridization and immunoperoxidase techniques.Cell Biol. Int. Rep. 9, 31–42.

    PubMed  Google Scholar 

  • Bernuau, D., Poliard, A. M. &Feldmann, G. (1988).In situ cellular analysis of AFP gene expression in regenerating rat liver after partial hepatectomy.Hepatology 8, 997–1005.

    PubMed  Google Scholar 

  • Chianale, J., Dvorak, C., Farmer, D. L., Michaels, L. &Gumucio, J.J. (1988). Cytochrome P-450 gene expression in the functional units of the fetal liver.Hepatology 8, 318–26.

    PubMed  Google Scholar 

  • Conti, R., Ceccarini, C. &Tecce, M. F. (1989). Thyroid hormone effect on α-fetoprotein and albumin coordinate expression by a human hepatoma cell line.Biochim. Biophys. Acta 1008, 315–21.

    PubMed  Google Scholar 

  • Courtoy, P. J., Lombart, C., Feldmann, G., Moguilevsky, N. &Rogier, E. (1981). Synchronous increase of four acute phase proteins synthesized by the same hepatocytes during the inflammatory reaction.Lab. Invest. 44, 105–15.

    PubMed  Google Scholar 

  • De Groot, C. J., Van Zonneveld, A. J., Mooren, P. G., Zonneveld, D., Van den Dool, A., Van den Bogaert, A. J. W., Lamers, W. H., Moorman, A. F. M. &Charles, R. (1984). Regulation of mRNA levels of rat liver carbamoylphosphate synthetase by glucocorti-costeroids and cyclic AMP as estimated with a specific cDNA.Biochem. Biophys. Res. Comm. 124, 882–8.

    PubMed  Google Scholar 

  • Evarts, R. P., Nagy, P., Marsden, E. &Thorgeirsson, S. S. (1987).In situ hybridization studies on expression of albumin and α-fetoprotein during the early stage of neoplastic transformation in rat liver.Cancer Res. 47, 5469–75.

    PubMed  Google Scholar 

  • Feinberg, A. P. &Vogelstein, B. (1984). A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity.Anal. Biochem. 137, 266–7.

    PubMed  Google Scholar 

  • Gaasbeek Janzen, J. W., Westenend, P. J., Charles, R., Lamers, W. H. &Moorman, A. F. M. (1988). Gene expression in derivatives of the embryonic foregut during prenatal development of the rat.J. Histochem. Cytochem. 36, 1223–30.

    PubMed  Google Scholar 

  • Gumucio, J. J. &Chianale, J. (1988). Liver cell heterogeneity and liver function. In:The Liver: Biology and Pathology. (edited byArias, I. M., Popper, H., Jakoby, W. B. andSchachter, D.). pp. 931–47. New York: Raven Press.

    Google Scholar 

  • Jagodzinski, L. J., Sargent, Th. D., Yang, M., Glackin, C. &Bonner, J. (1981). Sequence homology between RNAs encoding rat α-fetoprotein and rat serum albumin.Proc. Natl. Acad. Sci. 78, 3521–5.

    PubMed  Google Scholar 

  • Jefferson, L. S., Liao, W. S. L., Peavy, D. E., Miller, T. B., Appel, M. C. &Taylor, J. M. (1983). Diabetes-induced alterations in liver protein synthesis: changes in the relative abundance of mRNAs for albumin and other plasma proteins.J. Biol. Chem. 258, 1369–75.

    PubMed  Google Scholar 

  • Jungermann, K. (1986). Functional heterogeneity of periportal and perivenous hepatocytes.Enzyme 35, 161–80.

    PubMed  Google Scholar 

  • Jungerman, K. &Katz, N. (1989). Functional specialization of different hepatocyte populations.Physiol. Rev. 69, 708–64.

    PubMed  Google Scholar 

  • Lamers, W. H., Gaasbeek Janzen, J. W., Te Kortschot, A., Charles, R. &Moorman, A. F. M. (1987). The development of enzymic zonation in liver parenchyma is related to the development of the acinar architecture.Differentiation 35, 228–35.

    PubMed  Google Scholar 

  • Lamers, W. H., Verbeek, F. J., Moorman, A. F. M. & Charles, R. (1989a). The metabolic lobulus, a key to the architecture of the liver. In:RBC Cell Biology Reviews: Intercellular Hepatocyte Heterogeneity. (edited byGumucio, J. J.) pp. 5–26. Springer International.

  • Lamers, W. H., Hilberts, A., Furt, E., Smith, J., Jones, C. N., Van Noorden, C. J. F., Gaasbeek Janzen, J. W., Charles, R. &Moorman, A. F. M. (1989b). Hepatic enzymic zonation: a re-evaluation of the concept of the liver acinus.Hepatology 10, 72–6.

    PubMed  Google Scholar 

  • Lebouton, A. V. &Peters Masse, J. (1980a). A random arrangement of albumin-containing hepatocytes seen with histo-immunologic methods. I. Verification of the artifact.Anat. Rec. 197, 183–94.

    PubMed  Google Scholar 

  • Lebouton, A. V. &Peters Masse, J. (1980b). A random arrangement of albumin-containing hepatocytes seen with histo-immunologic methods. II. Conditions that produce the artifact.Anat. Rec. 197, 195–203.

    PubMed  Google Scholar 

  • Le Douarin, N. M. (1975). An experimental analysis of liver development.Medical Biology 53, 427–55.

    PubMed  Google Scholar 

  • Moorman, A. F. M., De Boer, P. A. J., Geerts, W. J. C., Van de Zande, L. P. G. W., Charles, R. &Lamers, W. H. (1988). Complementary distribution of CPS (ammonia) and GS mRNA in adult rat liver detected byin situ hybridization.J. Histochem. Cytochem. 36, 751–5.

    PubMed  Google Scholar 

  • Moorman, A. F. M., Charles, R. and Lamers, W. H. (1989a) Development of hepatocyte heterogeneity. In:RBC Cell Biology Reviews: Intercellular Hepatocyte Heterogeneity. (edited byGumucio, J. J.) pp. 27–41. Springer International.

  • Moorman, A. F. M., De Boer, P. A. J., Das, A. T., Carter, N. D., Charles, R. & Lamers, W. H. (1989b) mRNA Distribution types in adult rat liver and during development. (Abstract) inRegulation of Liver Gene Expression pp. 122. Cold Spring Harbor.

  • Moorman, A. F. M., De Boer, P. A. J., Das, A. T., Labruyère, W. Th., Charles, R. & Lamers, W. H. (1990) Expression patterns of mRNAs for ammonia-metabolizing enzymes in the developing rat: the ontogenesis of hepatocyte heterogeneity.Histochem. J. (In Press)

  • Nahon, J. L., Tratner, I., Poliard, A., Presse, F., Poiret, M., Gal, A., Sala-Trepat, J. M., Legrès, L., Feldmann, G. &Bernuau, D. (1988). Albumin and α-fetoprotein gene expression in various non-hepatic rat tissues.J. Biol. Chem. 263, 11436–42.

    PubMed  Google Scholar 

  • Nawa, K., Nakamura, T., Kumatori, A., Noda, C. &Ichihara, A. (1986). Glucocorticoid-dependent expression of the albumin gene in adult rat hepatocytes.J. Biol. Chem. 261, 16883–8.

    PubMed  Google Scholar 

  • Pignal, F., Maurice, M. &Feldmann, G. (1982). Immunoperoxidase localization of albumin and fibrinogen in rat liver fixed by perfusion or immersion.J. Histochem, Cytochem. 30, 1004–14.

    Google Scholar 

  • Poliard, A. M., Bernuau, D., Tournier, I., Legres, L. D., Schoevaert, D., Feldmann, G. &Sala-Trepat, J. M. (1986). Cellular analysis byin situ hybridization and immunoperoxidase of α-fetoprotein and albumin gene expression in rat liver during the perinatal period.J. Cell Biol. 103, 777–86.

    PubMed  Google Scholar 

  • Poliard, A. M., Feldmann, G. &Bernuau, D. (1988). α-fetoprotein and albumin gene transcript are detected in distinct cell populations of the brain and kidney of the developing rat.Differentiation 39, 59–65.

    PubMed  Google Scholar 

  • Rüther, U., Tripodi, M., Cortese, R. &Wagner, E. F. (1987). The human α-I-antitrypsin gene is efficiently expressed from two tissue-specific promotors in transgenic mice.Nucl. Acids Res. 15, 7519–29.

    PubMed  Google Scholar 

  • Schwarz, M., Peres, G., Beer, D. G., Maor, M., Buchmann, A., Kunz, W. &Pitot, H. C. (1986). Expression of albumin messenger RNA detected byin situ hybridization in preneoplastic and neoplastic lesions in rat liver.Cancer Res. 46, 5903–12.

    PubMed  Google Scholar 

  • Sell, S., Longley, M. A. &Boulter, J. (1985). α-fetoprotein and albumin gene expression in brain and other tissues of fetal and adult rats.Dev. Brain Res. 22, 49–53.

    Google Scholar 

  • Sellem, C. H., Frain, M., Erdos, T. &Sala-Trepat, J. M. (1984). Differential expression of albumin and α-fetoprotein genes in fetal tissues of mouse and rat.Dev. Biol. 102, 51–60.

    PubMed  Google Scholar 

  • Selten, G. C. M., Princen, H. M. G., Selten-Versteegen, A. E., Mol-Backx, G. P. B. M. &Yap, S. H. (1982). Sequence content of α-fetoprotein, albumin and fibrinogen polypeptide mRNAs in different organs, developing tissues and in liver during carcinogenesis in rats.Biochim. Biophys. Acta 699, 131–7.

    PubMed  Google Scholar 

  • Shroyer, K. R. &Nakane, P. K. (1987). Immunohistochemical localization of albumin andin situ hybridization of albumin mRNA.Cell Biochemistry and Function 5, 195–210.

    PubMed  Google Scholar 

  • Thurman, R. G. &Kauffman, F. (1985). Sublobular compartmentation of pharmacologic events (SCOPE): measurements of metabolic fluxes in periportal and pericentral regions of the liver lobule with microfluorimetric and micropolarographic techniques.Hepatology 5, 144–51.

    PubMed  Google Scholar 

  • Tilghman, S. M., Kioussis, D., Gorin, M. B., Predes Garcia Ruiz, J. &Ingram, R. S. (1979). The presence of intervening sequences in the α-fetoprotein gene of the mouse.J. Biol. Chem. 254, 15, 7393–9.

    PubMed  Google Scholar 

  • Tilghman, S. M. &Belayew, A. (1982). Transcriptional control of the murine albumin α-fetoprotein locus during development.Proc. Natl. Acad. Sci. 79, 5254–7.

    PubMed  Google Scholar 

  • Tokiwa, T., Taketa, K. &Sato, J. (1987). Production of albumin and α-fetoprotein in primary culture of fetal human liver cells on collagenous substrata in the presence of hydrocortisone.In Vitro Cell Dev. Biol. 23, 830–6.

    PubMed  Google Scholar 

  • Traber, P. G., Chianale, J. &Gumucio, J. J. (1988). Physiological significance and regulation of hepatocellular heterogeneity.Gastroenterol. 95, 1130–43.

    Google Scholar 

  • Turcotte, B., Guertin, M., Chevrette, M. &Bélanger, L. (1985). Rat α-fetoprotein messenger RNA: 5′-end sequence and glucorticoid-suppressed liver transcription in an improved nuclear run-off assay.Nucl. Acids Res. 13, 2387–98.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moorman, A.F.M., de Boer, P.A.J., Evans, D. et al. Expression patterns of mRNAs for α-fetoprotein and albumin in the developing rat: the ontogenesis of hepatocyte heterogeneity. Histochem J 22, 653–660 (1990). https://doi.org/10.1007/BF01047449

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01047449

Keywords

Navigation