Skip to main content
Log in

Oxidation behavior of copper at high temperatures under two different modes of direct-current applications

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Oxidation kinetics of copper in the temperature range of 973–1173 K atP O 2=21.27 kPa exhibit enhancement and deceleration in the rates with changing polarity compared to normal oxidation under interrupted mode of directcurrent application. These conditions are achieved by connecting the oxidizing copper covered with an initially formed thin oxide film to the positive and negative terminal of a dc source, respectively. However, the influence of direction of the current is found to be opposite under uninterrupted mode of impressed current flow in the same temperature range. The effect of short-circuiting the metal to the outer oxide/air interface on the reaction kinetics is also reported. The rate of oxide-scale growth under normal condition, and two different modes of current applications as well as with shorting circuitry attachment conform to the parabolic growth law. The results pertaining to the two different modes of impressed current have been discussed considering both the phenomena of electrolysis of the oxide electrolyte and the polarization at the two phase boundaries. The enhancement and the reduction in rates under uninterrupted impressed current conditions are explained on the basis of increased and decreased average defect concentrations, respectively, within the oxide layer. The acceleration and deceleration in the rates under interrupted mode of current flow have been explained in the light of sustenance of a steeper and flatter electrochemical-potential gradient of defects, respectively, across the growing-oxide layer. The possible different responses of the metal/oxide and oxide/air interfaces to the impressed current brought into play by two different modes of current application, have enabled to display a better insight on the mechanistic aspects of scale growth under the influence of an externally applied current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Jorgensen,J. Chem. Phys. 37, 874 (1962).

    Google Scholar 

  2. P. J. Jorgensen,J. Electrochem. Soc. 110, 461 (1963).

    Google Scholar 

  3. P. J. Jorgensen,Oxidation of Metals and Alloys, D. L. Douglass, ed. (ASM, Metals Park, OH, 1971), p. 157.

    Google Scholar 

  4. J. R. Anderson and I. M. Ritchie,Proc. Roy. Soc. A299, 371 (1967).

    Google Scholar 

  5. I. M. Ritchie, G. H. Scott, and P. J. Fensham,Surf. Sci. 19, 230 (1970).

    Google Scholar 

  6. G. L. Hunt and I. M. Ritchie,Oxid. Met. 2, 361 (1970).

    Google Scholar 

  7. D. H. Bradhurst, J. E. Draley, and C. J. Van Druen,J. Electrochem. Soc. 112, 1171 (1965).

    Google Scholar 

  8. F. Schein, B. LeBoucher, and P. Lacombe,Compt. Rend. 252, 4157 (1961).

    Google Scholar 

  9. F. Schein, B. LeBoucher, and P. Lacombe,Corros. Anti-corros. 10, 401 (1962).

    Google Scholar 

  10. P. K. Krishnamurthy and S. C. Sircar,Acta Met. 16, 1461 (1968).

    Google Scholar 

  11. S. K. Roy, P. K. Krishnamurthy, and S. C. Sircar,Acta Met. 18, 519 (1970).

    Google Scholar 

  12. S. K. Roy and S. C. Sircar,J. Electrochem. Soc. (India) 30, 179 (1981).

    Google Scholar 

  13. V. Ananth, S. K. Bose, and S. C. Sircar,Scripta Met. 14, 687 (1980).

    Google Scholar 

  14. V. Ananth, S. C. Sircar, and S. K. Bose, inProc. Int. Conf. Corrosion Science and Technology (ICMS-85), S. K. Bose and U. K. Chatterjee, eds. (Department of Metallurgical Engineering, I.I.T., Kharagpur, India, 1985), p. 320.

    Google Scholar 

  15. V. Ananth, S. C. Sircar, and S. K. Bose,Trans. Jpn. Inst. Met. 26, 123 (1985).

    Google Scholar 

  16. R. N. Patnaik, S. K. Bose, and S. C. Sircar,Br. Corros. J. 12, 57 (1977).

    Google Scholar 

  17. J. R. Anderson and I. M. Ritchie,Proc. Roy. Soc. A299, 354 (1967).

    Google Scholar 

  18. A. T. Fromhold,J. Phys. Chem. Solids 24, 1081 (1963).

    Google Scholar 

  19. A. T. Fromhold,J. Phys. Chem. Solids 33, 95 (1972).

    Google Scholar 

  20. A. T. Fromhold,Theory of Metal Oxidation, Vols. I, II (North-Holland, Amsterdam, 1976, 1980).

    Google Scholar 

  21. D. O. Raleigh,J. Electrochem. Soc. 113, 782 (1966).

    Google Scholar 

  22. F. A. Kröger, The Chemistry of Imperfect Crystals, Vol. 3, 2nd ed. (North-Holland, Amsterdam, 1974), p. 89.

    Google Scholar 

  23. P. Kofstad,High Temperature Oxidation of Metals (Wiley, New York, 1966), p. 135.

    Google Scholar 

  24. P. Kofstad,High Temperature Corrosion (Elsevier, London, 1988), p. 199.

    Google Scholar 

  25. V. Ananth, Influence of Direct Current and Short-Circuiting on the Oxidation of Copper and Iron and Reduction of Wüstite at High Temperatures, Ph.D. Thesis, I.I.T., Kharagpur, India (1985).

    Google Scholar 

  26. S. Mrowec and A. Stoklosa,Oxid. Met. 3 291 (1971).

    Google Scholar 

  27. G. Valensi,Rev. Metall. 45, 10 (1948).

    Google Scholar 

  28. P. Kofstad,Nature 179, 1382 (1957).

    Google Scholar 

  29. D. W. Bridges, J. P. Baur, G. S. Baur, and W. M. Fussell,J. Electrochem. Soc. 103, 475 (1956).

    Google Scholar 

  30. I. Czerski, S. Mrowec, and T. Werber,Roczniki Chem. 38, 643 (1964).

    Google Scholar 

  31. R. F. Tylecote,J. Inst. Metals 78, 259 (1950);81, 681 (1953).

    Google Scholar 

  32. W. J. Moore and B. Selikson,J. Chem. Phys. 19, 1539 (1951),20, 927 (1952).

    Google Scholar 

  33. W. J. Tomlinson and J. Yates,J. Phys. Chem. Solids 38, 1205 (1977).

    Google Scholar 

  34. S. K. Roy, S. K. Bose, and S. C. Sircar,Oxid. Met. 35, 1 (1991).

    Google Scholar 

  35. C. Wagner and K. Grünewald,Z. Phys. Chem. 40B, 455 (1938).

    Google Scholar 

  36. S. Mrowec, A. Stoklosa, and K. Godlewski,Cryst. Lattice Defects 5, 239 (1974).

    Google Scholar 

  37. J. Xue and R. Dieckmann,J. Phys. Chem. Solids 51, 1263 (1990).

    Google Scholar 

  38. O. Kubaschewski and C. B. Alcock,Metallurgical Thermochemistry 5th ed. (with corrections), (Pergamon Press, 1989), p. 379.

  39. W. J. Moore and M. O'Keeffe,J. Chem. Phys. 35, 1324 (1961).

    Google Scholar 

  40. R. S. Toth, R. Kilkson, and D. Trivich,Phys. Rev. 122, 482 (1961).

    Google Scholar 

  41. K. Fueki and J. B. Wagner,J Electrochem. Soc. 112, 384 (1965).

    Google Scholar 

  42. F. Pettit,J. Electrochem. Soc. 113, 1250 (1966).

    Google Scholar 

  43. S. Mrowec,Defects and Diffusion in Solids—An Introduction (Elsevier, 1980), p. 378.

  44. C. Wagner,Atom Movements (ASM, Cleveland, OH, 1951), p. 151.

    Google Scholar 

  45. P. Kofstad,Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (Wiley, 1972), p. 330.

  46. S. K. Mitra, Influence of Short-Circuiting and Static Charge Supply on the Oxidation Kinetics of Cu, Cu−Li and Cu−Cr Systems in the Temperature Range of 523 K–1173 K, Ph.D. thesis, I.I.T. Kharagpur, India (1991).

    Google Scholar 

  47. H. K. Eriksen and K. Hauffe, 5th Scand. Corros. Cong, Copenhangen, 1968, p. 38-I.

  48. N. F. Mott and R. W. Gurney,Electronic Processes in Ionic Crystals, 2nd ed. (Dover, New York, 1964), p. 178.

    Google Scholar 

  49. O. Kubaschewski and B. E. Hopkins,Oxidation of Metals and Alloys (Butterworths, London, 1967), p. 50.

    Google Scholar 

  50. Ref. 49, p. 105.

    Google Scholar 

  51. Ref. 22, p. 102.

    Google Scholar 

  52. K. Hauffe and P. Kofstad,Z. Elektrochem. 59, 399 (1955).

    Google Scholar 

  53. K. Hauffe,Oxidation of Metals (Plenum, New York, 1965), p. 165.

    Google Scholar 

  54. J. A. Leroux and E. Raub,Z. Anorg. Allgem. Chem. 188, 205 (1930).

    Google Scholar 

  55. Ref. 45 P. Kofstad,Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (Wiley, 1972), p. 332.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, S.K., Ananth, V. & Bose, S.K. Oxidation behavior of copper at high temperatures under two different modes of direct-current applications. Oxid Met 43, 185–215 (1995). https://doi.org/10.1007/BF01047027

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01047027

Key Words

Navigation