Skip to main content
Log in

High-temperature oxidation behavior of a wrought Ni-Cr-W-Mn-Si-La alloy

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

An investigation was carried out to study the kinetics and products of oxidation of a wrought Ni−Cr−W−Mn−Si−La alloy at temperatures in the range of 950 to 1150°C. Oxidation kinetics were evaluated from measurements of weight change, metal loss, and internal penetration. Analytical electron microscopy, scanning electron microscopy, electron probe microanalysis, and X-ray diffraction were used to characterize the scale microstructure. Initially, La was observed to segregate within a surface layer of about 5 μm thick, which promoted selective oxidation of Cr and Mn. Oxidation kinetics were found to follow a parabolic-rate law with an activation energy of about 232kJ/mol. During steady-state oxidation, the scale consisted of an inner adherent layer of α-Cr2O3 modified by the presence of La and Si, and shielded by an outer layer of MnCr2O4. Most of the La was segregated to grain boundaries of the α-Cr2O3 scale, however, Si was homogeneously distributed. It was concluded that the characteristic oxidation resistance of the alloy was related to the synergistic effects of Ni and Cr and to the effective minor additions of La, Si, and Mn; however, the useful life of the scale was limited by rupture and surface depletion in Cr, leading to accelerated internal oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Smialek and G. H. Meier, inSuperalloys II, C. T. Sims, N. S. Stoloff, and W. C. Hagel, eds. (Wiley Interscience, New York, 1987), p. 293.

    Google Scholar 

  2. E. A. Gulbranson and S. A. Jansson, inHeterogeneous Kinetics at Elevated Temperatures, G. R. Belton and W. L. Worrell, eds. (Plenum Press, New York, 1970), p. 181.

    Google Scholar 

  3. C. S. Tedmon,J. Electrochem. Soc. 113, 766 (1966).

    Google Scholar 

  4. E. A. Gulbranson and K. F. Andrew,J. Electrochem. Soc. 104, 334 (1957).

    Google Scholar 

  5. R. A. Perkins, inProc. Conf. Corrosion/Erosion of Coal Conversions System Materials, A. W. Levy, ed. (NACE Houston, 1979), p. 351.

    Google Scholar 

  6. H. M. Tawancy,Structure and Properties of High-Temperature Alloys: Applications of Analytical Electron Microscopy (KFUPM Press, Dhahran, Saudi Arabia 1993), Chap. 6, p. 265.

    Google Scholar 

  7. G. Y. Lai,High-Temperature Corrosion of Engineering Alloys (ASM International, Materials Park, Ohio, 1990). Chap. 3, p. 28.

    Google Scholar 

  8. D. L. Klarstrom, U.S. Patent No. 4476091, October 9, 1984.

  9. H. M. Tawancy, D. L. Klarstrom, and M. F. Rothman,J. Met. 36 (9), 58 (1984).

    Google Scholar 

  10. D. L. Klarstrom, H. M. Tawancy, D. E. Fluck, and M. F. Rothman, 29th Int. Gas Turbine Conf., ASME 84-GT-40, 1984.

  11. M. F. Rothman, 30th Gas Turbine Conf., ASME 85-GT-10, 1985.

  12. P. J. Goodhew,Specimen Preparation for Transmission Electron Microscopy of Materials (Royal Microscopy Society, Oxford University Press, Oxford, United Kingdom, 1984), p. 26.

    Google Scholar 

  13. M. J. Bennett and D. P. Moon, inThe Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys, E. Lang, ed. (Elsevier Applied Science, London/New York, 1989), p. 111.

    Google Scholar 

  14. T. A. Ramanarayanan, R. Ayers, R. Petkovic-Luton, and D. P. Leta,Oxid. Met. 29 (5/6), 445 (1988).

    Google Scholar 

  15. P. Kofstad, inChemical and Mechanical Behavior of Inorgnic Materials, A. W. Searcy, D. N. Ragone, and U. Colombo, eds. (Wiley-Interscience, New York, 1970), Chap. 13, p. 45.

    Google Scholar 

  16. K. Hoshino and N. L. Peterson,J. Am. Ceram. Soc. 66, 202 (1983).

    Google Scholar 

  17. A. Atkinson and R. I. Taylor, inTransport in Non-Stoichiometric Compounds G. Simkovich and V. S. Stubican, ed. (Plenum Press, New York, 1985), p. 285.

    Google Scholar 

  18. H. V. Atkinson,Oxid. Met. 24(3/4), 177 (1985).

    Google Scholar 

  19. K. P. Lillerud and P. Kofstad,J. Electrochem. Soc. 127, 2397 (1980).

    Google Scholar 

  20. D. Caplan and G. I. Sprouce,Oxid. Met. 9, 459 (1975).

    Google Scholar 

  21. J. H. Park, W. E. King, N. L. Peterson, and S. J. Rothman, inOxidation of Metals and Associated Mass Transport, M. A. Dayanada, ed. (TMS-AIME, Warrendale, Pennsylvania, 1987), p. 103.

    Google Scholar 

  22. N. J. Zaluzec, inIntroduction to Analytical Electron Microscopy, J. J. Hren, J. I. Goldstein, and D. C. Joy, eds. (Plenum Press, New York, 1979), Chap. 4, p. 121.

    Google Scholar 

  23. F. H. Stott, inThe Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys, E. Lang, ed. (Elsevier Applied Science, London/New York, 1989), p. 3.

    Google Scholar 

  24. G. E. Wasielewski and R. A. Rapp, inThe Superalloys, C. T. Sims and W. C. Hagel, eds. (Wiley-Interscience, New York, 1972), Chap. 10, p. 287.

    Google Scholar 

  25. M. Levy, P. Farrell, and F. S. Pettit, Corros.-NACE42 (12), 708 (1986).

    Google Scholar 

  26. D. P. Whittle, inHigh Temperature Corrosion, R. A. Rapp, ed. (NACE, Houston 1984), p. 171.

    Google Scholar 

  27. F. H. StottMater. Charact. 28, 311, (1992).

    Google Scholar 

  28. G. M. Raynaud and R. A. Rapp, inCorrosion, Microstructure, and Metallography, D. O. Northwood, W. E. White, and G. F. Vander Voort, eds.Microstructural Science vol. 12 (ASM, Metals Park, Ohio, 1985), p. 197.

    Google Scholar 

  29. G. Beranger, F. Armanet, and M. Lambertin, inThe Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys, E. Lang, ed. (Elsevier Applied Science, London/New York, 1989), p. 33.

    Google Scholar 

  30. D. P. Whittle and J. S. Stringer,Phil. Trans. R. Soc. A 295, 309 (1980).

    Google Scholar 

  31. P. Kofstad, inThe Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys, E. Lang, ed. (Elsevier Applied Science, London/New York, 1989), p. 367.

    Google Scholar 

  32. H. Hindam and D. P. Whittle,Oxid. Met. 18 (5/6), 245 (1982).

    Google Scholar 

  33. A. M. Huntz, inThe Role of Active Elements in the Oxidation of High Temperature Metals and Alloys, E. Lang, ed., (Elsevier Applied Science, London/New York, 1989), p. 81.

    Google Scholar 

  34. J. Jedlinski, inThe Role of Active Elements in the Oxidation of High Temperature Metals and Alloys, E. Lang, ed. (Elsevier Applied Science, London/New York, 1989), p. 131.

    Google Scholar 

  35. J. R. Nicholls and P. Hancock, inThe Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys, E. Lang, ed. (Elsevier Applied Science, London/New York, 1989), p. 195.

    Google Scholar 

  36. C. S. Giggins and F. S. Pettit,Met. Trans. 2, 1071 (1971).

    Google Scholar 

  37. G. Y. Lai,J. Met. 41, (7), 21 (1989).

    Google Scholar 

  38. C. M. Cotell, G. J. Yurek, and R. J. Hussey, D. F. Mitchell, and M. J. Graham,Proc. Electrochem. Soc. 88 (5), 268 (1988).

    Google Scholar 

  39. K. Przybylski and G. J. Yurek,J. Electrochem. Soc. 135, 517 (1988).

    Google Scholar 

  40. G. J. Yurek, K. Przybylski, and A. J. Garrett-Reed,J. Electrochem. Soc. 134, 2643 (1987).

    Google Scholar 

  41. C. H. Yang, P. A. Labun, G. E. Welsch, T. E. Mitchell, and M. J. Bennett,J. Mater. Sci. 22, 449 (1987).

    Google Scholar 

  42. M. J. Bennett, B. A. Bellamy, C. F. Knights, N. Medows, and N. J. Eyre,J. Mater. Sci. Eng. 69, 359 (1985).

    Google Scholar 

  43. G. C. Wood and D. P. Whittle,Corros. Sci. 7, 763 (1967).

    Google Scholar 

  44. F. H. Stott,Rep. Prog. Phys. 50, 861 (1987).

    Google Scholar 

  45. J. E. Harris,J. Met. 39 (1), 34 (1987).

    Google Scholar 

  46. J. Stringer,Werks. Korros. 23, 747 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tawancy, H.M. High-temperature oxidation behavior of a wrought Ni-Cr-W-Mn-Si-La alloy. Oxid Met 45, 323–348 (1996). https://doi.org/10.1007/BF01046988

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046988

Key Words

Navigation