Skip to main content
Log in

Microstructural evidence for short-circuit oxygen diffusion paths in the oxidation of a dilute Ni-Cr alloy

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A comparative study of high-temperature oxidation of Ni containing 1 at.% Cr and pure Ni was carried out. Instead of the conventional kinetics study using thermogravimetry, a microlithographic marker experiment was designed. Observation of the markers using cross-sectional TEM and SEM has revealed striking differences in the scale morphology, microstructures, and oxidation mechanisms between pure Ni and the Cr-doped Ni substrates. In particular, the results suggest that a small addition of Cr promotes significant inward transport of oxygen. Marker experiments revealed that NiO grown on pure Ni is wholly attributable to outward-cation diffusion. In contrast, NiO grown on Ni−1 at.% Cr exhibited formation of a substantial inner layer having a submicron grain size, established by the markers to have formed from oxygen ingress. For pure Ni, voids were observed to be distributed only within oxide grains. In contrast, for Ni containing 1 at.% Cr, elongated pores formed extensively along oxide-grain boundaries. Formation of new fine-grain oxide in these pores was observed to have sometimes completely resealed the void. It is, therefore, proposed that the transport of oxygen in the case of oxide scale grown on Ni−1 at.% Cr occurs via voids (pores) formed by vacancy coalescence at the grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mrowec,Corros. Sci. 7, 563 (1967).

    Google Scholar 

  2. G. B. Gibbs and R. Hales,Corros. Sci. 17, 487 (1977).

    Google Scholar 

  3. G. J. Yurek and H. Schmalzried,Ber. Bunsen-Ges. Phys. Chem. 79, 255 (1975).

    Google Scholar 

  4. D. P. Moon, A. W. Harris, P. R. Chalker, and S. Mountfort,Mater. Sci. Technol. 4, 1101 (1988).

    Google Scholar 

  5. D. P. Moon,Oxid. Met. 31, 71 (1989).

    Google Scholar 

  6. A. Atkinson and D. W. Smart,J. Electrochem. Soc. 135, 2886 (1988).

    Google Scholar 

  7. A. Atkinson, UKAEA Harwell ReportAERE-R12404 (1987).

  8. A. W. Harris and A. Atkinson, UKAEA Harwell ReportAERE-R13421 (1989).

  9. A. Atkinson,Mater. Sci. Technol. 4, 1046 (1988).

    Google Scholar 

  10. A. Atkinson and D. W. Smart, UKAEA Harwell ReportAERE-R12762 (1987).

  11. H. V. Atkinson,Mater. Sci. Technol. 4, 1052 (1988).

    Google Scholar 

  12. J. Robertson and M. I. Manning,Mater. Sci. Technol. 4, 1064 (1988).

    Google Scholar 

  13. A. G. Evans, D. Rajdev, and D. L. Douglass,Oxid. Met. 4, 151 (1972).

    Google Scholar 

  14. P. Kofstad,Oxid. Met. 24, 265 (1985).

    Google Scholar 

  15. R. B. Marcus and T. T. Sheng,Transmission Electron Microscopy of Silicon VLSI Circuits and Structures (Wiley, New York, 1983), p. 19.

    Google Scholar 

  16. C. K. Kim, S. K. Fan, and L. W. Hobbs, inMicroscopy of Oxidation, G. J. Lorimer, ed. (Institute of Metals, 1991), p. 374.

  17. B. L. Gleeson, D. L. Douglass and F. Gesmundo,Oxid. Met. 31, 209 (1989).

    Google Scholar 

  18. E. M. Fryt, G. C. Wood, F. H. Stott and D. P. Whittle,Oxid. Met. 23, 77 (1985).

    Google Scholar 

  19. H. M. Hindam and W. W. Smeltzer,Oxid. Met. 14, 337 (1980).

    Google Scholar 

  20. C. M. Cotell, K. Przybylski, and G. J. Yurek, inFundamental Aspects of High Temperature Corrosion, Vol. 2, D. A. Shores and G. J. Yurek eds. (The Electrochemical Society, Pennington, NJ, 1986), p. 103.

    Google Scholar 

  21. E. W. A. Young, H. E. Bishop and J. H. de Wit,Surf. Interface Anal. 9, 163 (1986).

    Google Scholar 

  22. T. A. Ramanarayanan, R. Ayer, R. Petkovic-Luton, and D. P. Leta,Oxid. Met. 29, 445 (1988).

    Google Scholar 

  23. F. H. Stott, I. G. Wright, T. Hodgkiess, and G. C. Wood,Oxid. Met. 11, 141 (1977).

    Google Scholar 

  24. L. W. Hobbs and T. E. Mitchell, inHigh Temperature Corrosion, R. A. Rapp, ed. (NACE-6, Houston, 1983), p. 76.

  25. P. Kofstad,JIMIS-3 Suppl., 1 (1983).

  26. A. Atkinson and R. I. Taylor, UKAEA Harwell ReportAERE-R11763 (1985).

  27. A. Atkinson, D. W. Smart, and R. I. Taylor, UKAEA Harwell ReportAERE-R12751 (1987).

  28. P. Choquet and R. Mevrel,Mater. Sci. Eng. A120, 153 (1989).

    Google Scholar 

  29. C. H. Yang, G. E. Welsch, and T. E. Mitchell,Mater. Sci. Eng. 69, 351 (1985).

    Google Scholar 

  30. J. Stringer,Corros. Sci. 10, 513 (1970).

    Google Scholar 

  31. A. G. Evans and R. M. Cannon,Mater. Sci. Forum 43, 243 (1989).

    Google Scholar 

  32. B. A. Pint, J. R. Martin, and L. W. Hobbs,Oxid. Met. 39, 167 (1993).

    Google Scholar 

  33. B. A. Pint and L. W. Hobbs,Oxid. Met. 41, 203 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, C.K., Hobbs, L.W. Microstructural evidence for short-circuit oxygen diffusion paths in the oxidation of a dilute Ni-Cr alloy. Oxid Met 45, 247–265 (1996). https://doi.org/10.1007/BF01046984

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046984

Key Words

Navigation