Skip to main content
Log in

Minimizing noisy functionals in hilbert space: An extension of the Kiefer-Wolfowitz procedure

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

LetH be an infinite-dimensional real separable Hilbert space andR the real line. Given an unknown functionalg:HR that can only be observed with random error, we consider a recursive method to locate an extremum ofg. Applications to optimal stochastic control are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, L. (1974).Stochastic Differential Equations, Wiley, New York.

    Google Scholar 

  2. Bertran, J. (1973). Optimisation stochastique dans un espace de Hilbert,C. R. Acad. Sci. Paris Ser. A 276, 613–616.

    Google Scholar 

  3. Dvoretzky, A. (1956). On stochastic approximation, Proc. Third Berkeley Symp. Math. Stat. Prob. 1, pp. 39–55.

    Google Scholar 

  4. Kiefer, J., and Wolfowitz, J. (1952). Stochastic estimation of the maximum of a regression function,Ann. Math. Stat. 23, 462–466.

    Google Scholar 

  5. Kushner, H., and Clark, D. (1978). Stochastic approximation methods for constrained and unconstrained systems,Applied Mathematical Sciences 25, Springer, Berlin.

    Google Scholar 

  6. Nevel'son, M., and Has'minskii, R. (1976).Stochastic approximation and Recursive Estimation, American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  7. Nixdorf, R. (1984). An invariance principle for a finite dimensional stochastic approximation method in a Hilbert space.J. Multivariate Anal. 15, 252–260.

    Google Scholar 

  8. Revesz, P. (1973). Robbins Monro procedure in a Hilbert space and its application in the theory of learning processes I,Stud. Sci. Math. Hung.,8, 391–398.

    Google Scholar 

  9. Revesz, P. (1973). Robbins Monro procedure in a Hilbert space II,Stud. Sci. Math. Hung. 8, 469–472.

    Google Scholar 

  10. Robbins, H., and Monro, S. (1951). A stochastic approximation method,Ann. Math. Stat. 22, 400–407.

    Google Scholar 

  11. Robbins, H., and Siegmund, D. (1971). A convergence theorem for non-negative almost supermartingales and some applications,Optimizing Methods in Statistics, Academic Press, New York, Rustagi, pp. 233–257.

    Google Scholar 

  12. Solov, G. (1979). On a stochastic approximation theorem in a Hilbert space and its applications,Theory Prob. Appl. 24, 413–419.

    Google Scholar 

  13. Venter, J., (1966). On Dvoretzky stochastic approximation theorems,Ann. Math. Stat. 37, 1534–1544.

    Google Scholar 

  14. Walk, H. (1977). An invariance principle for the Robbins-Monro process in a Hilbert space,Z. Wahrsch. verw. Gebiete 39, 135–150.

    Google Scholar 

  15. Walk, H. (1978). Martingales and the Robbins-Monro procedure inD[0, 1],J. Multivariate Anal. 8, 430–452.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldstein, L. Minimizing noisy functionals in hilbert space: An extension of the Kiefer-Wolfowitz procedure. J Theor Probab 1, 189–204 (1988). https://doi.org/10.1007/BF01046934

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046934

Key Words

Navigation