Skip to main content
Log in

Stochastic flows on a countable set: Convergence in distribution

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Consider a sequenceF 1,F 2,... of i.i.d. random transformations from a countable setV toV. Such a sequence describes a discrete-time stochastic flow onV, in which the position at timen of a particle that started at sitex isM n(x), whereM n =F n F n−1 ∘⋯∘F 1. We give conditions on the law ofF 1 for the sequence (M n) to be tight, and describe the possible limiting law. an example called the block charge model is introduced. The results can be formulated as a statement about the convergence in distribution of products of infinite-dimensional random stochastic matrices. In practical terms, they describe the possible equilibria for random motions of systems of particles on a countable set, without births or deaths, where each site may be occupied by any number of particles, and all particles at a particular site move together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bougerol, P. (1987). Tightness of products of random matrices and stability of linear stochastic systems,Amn. Probability 15, 40–74.

    Google Scholar 

  2. Bramson, M. and Griffeath, D. (1980). Asymptotics for interacting particle systems onZ d,Z. Wahrsch. 53, 183–196.

    Google Scholar 

  3. Carverhill, A. C. (1985). Flows of stochastic dynamical systems: ergodic theory,Stochastics 14, 273–318.

    Google Scholar 

  4. Chung, K. L. (1967).Markov Chains with Stationary Transition Probabilities, 2nd Ed., Springer-Verlag, Berlin.

    Google Scholar 

  5. Clifford, A. H., and Preston, G. B. (1961).The Algebraic Theory of Semigroups, Vol. I. Math. Surveys No. 7, American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  6. Hognas, G. (1977). Random semigroup acts on a finite set,J. Australian Math. Soc. Ser. A 23, 481–498.

    Google Scholar 

  7. Hognas, G., and Mukherjea, A. (1980). Recurrent random walks and invariant measures on semigroups ofn×n matrices,Math. Z. 173, 69–94.

    Google Scholar 

  8. Housain, T. (1966).Introduction to Topological Groups, Saunders, Philadelphia.

    Google Scholar 

  9. Kesten, H., and Spitzer, F. (1984). Convergence in distribution of products of random matrices,Z. Wahrsch. 67, 363–386.

    Google Scholar 

  10. Kifer, Y. (1985).Ergodic Theory of Random Transformations, Birkhauser, 1985.

  11. Kunita, H. (1984). Stochastic differential equations and stochastic flows of diffeomorphisms,Springer Lecture Notes Math. 1097, 143–303

    Google Scholar 

  12. Le Jan, Y. (1987). Equilibre statistique pour les produits des difféomorphismes aléatoires indépendants,Ann. Inst. H. Poincaré 23, 111–120.

    Google Scholar 

  13. Liggett, T. M. (1985).Interacting Particle Systems, Springer, New York.

    Google Scholar 

  14. Mukherjea, A. (1987). Convergence in distribution of products of random matrices: A semigroup approach,Trans. Am. Math. Soc. 303, 395–411.

    Google Scholar 

  15. Mukherjea, A., and Tserpes, N. (1971). Idempotent measures on locally compact semigroups,Proc. Am. Math. Soc. 29, 143–150.

    Google Scholar 

  16. Mukherjea, A., and Tserpes, N. (1976). Measures on topological semigroups,Springer Lecture Notes in Math. 547, 1976.

    Google Scholar 

  17. Parthasarathy, K. R. (1967).Probability Measures on Metric Spaces, Academic Press, New York.

    Google Scholar 

  18. Ross, S. (1983).Stochastic Processes, John Wiley, New York.

    Google Scholar 

  19. Skorohod, A. V. (1984).Random Linear Operators, Reidel, Dordrecht (Russian ed., 1978).

    Google Scholar 

  20. Skorohod, A. V. (1983). Products of independent random operators,Russ. Math Surv. 38(4), 291–318.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darling, R.W.R., Mukherjea, A. Stochastic flows on a countable set: Convergence in distribution. J Theor Probab 1, 121–147 (1988). https://doi.org/10.1007/BF01046931

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046931

Key Words

Navigation