Skip to main content
Log in

Nonlinear effects in the wave equation with a cubic restoring force

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A combined numerical and analytic study is made of the nonlinear wave equationu tt , −u xx +u 3 = 0, with homogeneous Dirichlet boundary conditions atx = 0 andx = 1. Numerically, it is observed that solutions tend to have a recurrence property, and in particular that they do not decay to zero as time tends to infinity. Analytically, it is proved that if a solution decays to zero, it must do so very slowly. Moreover, the analysis shows that for large initial data, oscillations are much faster than for the corresponding linear equation. Finally, for positive initial positionu (t, 0) and zero initial speedu t (t, 0), a detailed analysis of the behavior of the solution at the moment it first becomes negative is carried out. Surprisingly, this behavior depends on the initial position in a more delicate way than expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amerio, L.; Prouse, G. (1971): Abstract almost periodic functions and functional equations. New York: Van Nostrand

    Google Scholar 

  • Brezis, H.; Coron, J. M.; Nirenberg, L. (1980): Free vibrations for a non linear wave and a theorem of P. Rabinowitz. Commun. Pure Appl. Math. 33, 667–689

    Google Scholar 

  • Cabannes, H. (1984): Mouvement d'une corde vibrante en présence d'un obstacle rectiligne. J. Mec. Theor. Appl. 3, 397–414

    Google Scholar 

  • Cabannes, H.; Haraux, A. (1981): Mouvements presque-périodiques d'une corde vibrante en présence d'un obstacle fixe, rectiligne ou ponctuel. Int. J. Nonlinear Mech. 16, 449–458

    Google Scholar 

  • Cazenave, T.; Haraux, A. (1984): Propriétés oscillatoires des solutions de certaines équations des ondes semi-linéaires. C. R. Acad. Sci. Paris 298, 449–452

    Google Scholar 

  • Cazenave, T.; Haraux, A. (1987): Oscillatory phenomena associated to semilinear wave equations in one spatial dimension. Trans. Am. Math. Soc. 300, 207–233

    Google Scholar 

  • Gardner, C. S.; Greene, J.; Kruskal, M. D.; Miura, R. M. (1974): Korteweg-De Vries equation and generalizations. Methods for exact solutions. Commun. Pure Appl. Math. 28, 97–133

    Google Scholar 

  • Hale, J. K. (1969): Ordinary differential equations. New York: Wiley

    Google Scholar 

  • Haraux, A. (1983): Remarks on hamiltonian systems. Chin. J. Math. 11, 5–32

    Google Scholar 

  • Haraux, A. (1987): Semi-linear wave equations in bounded domains. In: Dieudonné, J. (Ed.) Mathematical reports, vol. 3, No. 1. London: Harwood Academic Publ.

    Google Scholar 

  • Haraux, A.; Cabannes, H. (1983): Almost periodic motion of a string vibrating against a straight, fixed obstacle. Nonlinear Anal. Theory Methods Appl. 7, 129–141

    Google Scholar 

  • Kuo Pen-Yu; Vazquez, L. (1983): A numerical scheme for nonlinear Klein-Gordon equations. J. Appl. Sci. 1, 25–32

    Google Scholar 

  • Lax, P. D. (1975): Periodic solutions of the Korteweg-De Vries equation. Commun. Pure Appl. Math. 28, 141–188

    Google Scholar 

  • Novikov, S. P. (1974): The periodic problem for the the Korteweg-De Vries equation. Functs. Anal. Prilozh. 8, 54–66

    Google Scholar 

  • Rabinowitz, P. H. (1967): Periodic solutions of nonlinear hyperbolic partial differential equations. Commun. Pure Appl. Math. 20, 145–205

    Google Scholar 

  • Rabinowitz, P. H. (1978): Free vibrations for a semi-linear wave equation. Commun. Pure Appl. Math. 31, 31–68

    Google Scholar 

  • Rabinowitz, P. H. (1982): Subharmonic solutions of a forced wave equation. Proc. conf. in honor of Prof. Hartman

  • Rabinowitz, P.H. (1985): Personal communication

  • Reder, C. (1979): Etude qualitative d'un problèm hyperbolique avec contrainte unilatérale. Thèse de 33ème cycle, Université de Bordaux, France

    Google Scholar 

  • Strauss, W. A.; Vazquez, L. (1978): Numerical solution of a Nonlinear Klein-Gordon equation. J. Comput. Phys. 28, 271–278

    Google Scholar 

  • Vazquez, L. (1987): Long time behavior in numerical solutions of certain dynamical systems. An. Fis. A 83, 254–260

    Google Scholar 

  • Wilhelm, M. (1985): Subharmonic oscillations of a semi-linear wave equation. Nonlinear Anal. Theory Methods Appl. 9, 503–514

    Google Scholar 

  • Zabusky, N. J.; Kruskal, M. D. (1956): Interactions of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cazenave, T., Haraux, A., Vazquez, L. et al. Nonlinear effects in the wave equation with a cubic restoring force. Computational Mechanics 5, 49–72 (1989). https://doi.org/10.1007/BF01046879

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046879

Keywords

Navigation