Skip to main content
Log in

The distribution of calcium in undecalcified bone as revealed by an improved pyro-antimonate method

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

The localization of pyro-antimonate-precipitable Ca2+ in the undecalcified femur and calvaria of neonatal rats was examined. The fixation of bones with pyro-antimonate-glutaraldehyde followed by pyro-antimonate-osmium, (two-step method) resulted in better preservation of tissue and more precise localization of precipitates than did the direct immersion of specimens in pyro-antimonate-osmium solution (one-step method). The precipitate was frequently observed within the endoplasmic reticulum of obsteoblasts. Most vacuoles in osteoclasts contained precipitate. By contrast, the mitochondria in these cells were associated with small amounts of precipitate. There was no evidence of precipitate in the Golgi apparatus. The presence of calcium in the precipitate was verified by EGTA treatment and X-ray microanalysis. This study demonstrated that (1) the two-step pyro-antimonate method is a useful and reliable procedure for visualizing Ca2+, and (2) cellular Ca2− can be successfully localized in undecalcified bone by this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baron, R. (1989) Molecular mechanisms of bone resorption by the osteoclast.Anat. Rec. 224, 317–24.

    PubMed  Google Scholar 

  • Carafoli, E. (1988) Membrane transport of calcium: an overview.Meth. Enzymol. 157, 3–11.

    PubMed  Google Scholar 

  • Clark, M. A. &Ackerman, G. A. (1971) A histochemical evaluation of the pyroantimonate-osmium reaction.J. Histochem. Cytochem. 19, 727–37.

    PubMed  Google Scholar 

  • Herman, L., Sato, T., Hales, C. N. (1973) The electron microscopic localization of cations to pancreatic islets of Langerhans and their possible role in insulin secretion.J. Ultrastruct. Res. 42, 298–311.

    PubMed  Google Scholar 

  • Kawamata, S. (1990) Localization of pyroantimonate-precipitable calcium in the endolymphatic sac of the tree frog,Hyla arborea japonica.Arch. Histol. Cytol. 53, 405–11.

    PubMed  Google Scholar 

  • Klein, R. L., Yen, S.-S. &Thureson-Klein, A. (1972) Critique on the K-pyroantimonate method for semiquantitative estimation of cations in conjunction with electron microscopy.J. Histochem. Cytochem. 20, 65–78.

    PubMed  Google Scholar 

  • Koch, G., Smith, M., Macer, D., Webster, P. &Mortara, R. (1986) Endoplasmic reticulum contains a common, abundant calcium-binding glycoprotein, endoplasmin.J. Cell Sci. 86, 217–32.

    PubMed  Google Scholar 

  • Kominick, H. (1962) Elektronenmikroskopische Lokalisation von Na+ und Cl in Zellen und Geweben.Protoplasma 55, 414–8.

    Google Scholar 

  • Macer, D. R. J. &Koch, G. L. E. (1988) Identification of a set of calcium-binding proteins in reticuloplasm, the luminal content of the endoplasmic reticulum.J. Cell. Sci. 91, 61–70.

    PubMed  Google Scholar 

  • Mentré, P. &Escaig, F. (1988) Localization of cations by pyroantimonate. I. Influence of fixation on distribution of calcium and sodium. An approach by analytical ion microscopy.J. Histochem. Cytochem. 36, 49–54.

    PubMed  Google Scholar 

  • Mentré, P. &Halpern, S. (1988) Localization of cations by pyroantimore. II. Electron probe microanalysis of calcium and sodium in skeletal muscle of mouse.J. Histochem. Cytochem. 36, 55–64.

    PubMed  Google Scholar 

  • Probst, W. (1986) Ultrastructural localization of calcium in the CNS of vertebrates.Histochemistry 85, 231–9.

    PubMed  Google Scholar 

  • Simson, J. A. V. &Spicer S. S. (1975) Selective subcellular localization of cations with variants of the potassium (pyro)antimonate technique.J. Histochem. Cytochem. 23, 575–98.

    PubMed  Google Scholar 

  • Somlyo, A. P., Bond, M. &Somlyo, A. V. (1985) The calcium content of mitochondria and endoplasmic reticulum in liver rapidly frozenin situ.Nature 314, 622–5.

    PubMed  Google Scholar 

  • Suzuki, S. &Sugi, H. (1989) Evaluation of the pyroantimonate method for detecting intracellular calcium localization in smooth muscle fibers by the X-ray microanalysis of cryosections.Histochemistry 92, 95–101.

    PubMed  Google Scholar 

  • Talmage, R. V. (1970) Morphological and physiological considerations in a new concept of calcium transport in bone.Am J. Anat. 129, 467–76.

    PubMed  Google Scholar 

  • Van Iren, F., Van Essen-Joolen, L., Van Der Duyn Schouten, P., Boers-Van Der Sluijs, P. &De Bruijn, W. C. (1979) Sodium and calcium localization in cells and tissues by precipitation with antimonate: a quantitative study.Histochemistry 63, 273–94.

    PubMed  Google Scholar 

  • Watson, L. P., Kang, Y.-H. &Falk, M. C. (1989) Cytochemical properties of obsteoblast cell membrane domains.J. Histochem. Cytochem. 37, 1235–46.

    PubMed  Google Scholar 

  • Wick, S. M. &Hepler, P. K. (1982) Selective localization of intracellular Ca2+ with potassium antimonate.J. Histochem. Cytochem. 30, 1190–204.

    PubMed  Google Scholar 

  • Wooding, F. B. P. &Morgan, G. (1978) Calcium localization in lactating rabbit mammary secretory cells.J. Ultrastruct. Res. 63, 323–33.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawamata, S. The distribution of calcium in undecalcified bone as revealed by an improved pyro-antimonate method. Histochem J 24, 275–282 (1992). https://doi.org/10.1007/BF01046842

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046842

Keywords

Navigation