Skip to main content
Log in

Preventing the accelerated low-temperature oxidation of MoSi2 (pesting) by the application of superficial alkali-salt layers

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Previous work showed that MoSi2 diffusion coatings formed by a NaF-activated pack cementation process did not pest. A Na−Al-oxide by-product layer resulting from the NaF activator formed a Na-silicate layer to passivate MoSi2. Superficial NaF layers were then used to prevent the pesting of MoSi2 diffusion coating that were otherwise susceptible to pest disintegration. In this study, the use of superficial alkali-salt layers to prevent the accelerated oxidation of bulk MoSi2 at 500°C is investigated more broadly. The application of Na-halide, KF, LiF, Na2B4O7, or Na-silicate layers prior to oxidation prevented accelerated oxidation and pesting for at least 2000 hr at 500°C in air. The formation of a fast-growing, Na-silicate layer passivates MoSi2. The MoO3 that forms during oxidation absorbs sodium by intercolation to form stable Na-molybdate precipitates. Na2B4O7, Na-silicate, LiF, and KF prevented accelerated oxidation at 500°C by a similar mechanism. The application of alkali-halide salts is a simple, effective solution to prevent the accelerated oxidation and pesting of MoSi2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Schliching,High Temp. Pressures 10, 241 (1978).

    Google Scholar 

  2. R. R. Giler,Met. Eng. Quart. Nov., 452 (1973).

    Google Scholar 

  3. G. Meier, N. Birks, F. S. Pettit, R. A. Perkins, and H. J. Grabke, inFirst International Symposium on Structural Intermetallics, R. Darolia, J. J. Lewandowski, C. T. Liu, P. L. Martin, D. B. Miracle, and M. V. Nathal, eds. (TMS, 1993), p. 861.

  4. D. A. Berztiss, R. R. Cerchiara, E. A. Gulbransen, F. S. Pettit, and G. H. Meier,Mater. Sci. Eng. A155, 165 (1992).

    Google Scholar 

  5. J. R. Berkowitz-Mattuck, P. E. Blackburn, and E. J. Felton,Trans. Met. Soc. AIME 233, 1093 (1965).

    Google Scholar 

  6. J. R. Berkowitz-Mattuck, M. Rossetti, and D. W. Lee,Met. Trans. 1, 479 (1970).

    Google Scholar 

  7. J. J. Petrovic,MRS Bull. 18(7), 35 (1993).

    Google Scholar 

  8. A. K. Vasudevan and J. J. Petrovic,Mater. Sci. Eng. A155, 1 (1992).

    Google Scholar 

  9. R. M. Aikin, Jr., inFirst International Symposium on Structural Intermetallics, R. Darolia, J. J. Lewandowski, C. T. Liu, P. L. Martin, D. B. Miracle and M. V. Nathal, eds. (TMS, 1993), p. 791.

  10. T. C. Chou and T. G. Nieh,JOM 45(12), 15 (1993).

    Google Scholar 

  11. T. C. Chou and T. G. Nieh,J. Mater. Res. 8, 214 (1993).

    Google Scholar 

  12. T. C. Chou and T. G. Nieh,J. Mater. Res. 8, 1605 (1993).

    Google Scholar 

  13. P. J. Meschter,Met. Trans. 23A, 1763 (1992).

    Google Scholar 

  14. R. W. Bartlett, J. W. McCamont, and P. R. Page,J. Am. Ceram. Soc. 48, 551 (1965).

    Google Scholar 

  15. J. H. Westbrook and D. L. Wood,J. Nucl. Mater. 12, 208 (1964).

    Google Scholar 

  16. C. G. McKamey, P. F. Tortorelli, J. H. Devan, and C. A. Carmichael,J. Mater. Res. 7, 2747 (1992).

    Google Scholar 

  17. E. W. Lee, J. Cook, A. Khan, R. Mahapatra, and J. Waldman,JOM 43 (5), 54 (1991).

    Google Scholar 

  18. J. Cook, A. Khan, E. Lee, and R. Mahapatra,Mater. Sci. Eng. A155, 183 (1992).

    Google Scholar 

  19. W. O. Soboyejo, K. T. Venkatesawara Rao, S. M. L. Sastry, and R. O. Ritchie,Met. Trans. 24A, 585 (1992).

    Google Scholar 

  20. J. J. Petrovic and R. E. Honnell,Ceram. Eng. Sci. Proc. 11, 734 (1990).

    Google Scholar 

  21. E. Fitzer,Warmfeste und Korrosionsbeständige Sinterwerkstoffe 2, Plansee Seminar, June 19–23, 1955, F. Benesovsky, ed. (Springer-Verlag, 1956), p. 56.

  22. E. Fitzer and J. Schwab,Metall. 9, 1062 (1955).

    Google Scholar 

  23. E. Fitzer, H. Herbst, and J. Schlichting,Werkst. Korros. 24, 274 (1973).

    Google Scholar 

  24. D. M. Shah, A. Berczik, D. L. Anton, and R. Hecht,Mater. Sci. Eng. A155, 45 (1992).

    Google Scholar 

  25. E. Fitzer and D. Kehr,Thin Solid Films 39, 55 (1976).

    Google Scholar 

  26. A. Mueller, G. Wang, R. A. Rapp and E. L. Courtright,J. Electrochem. Soc. 139, 1266 (1992).

    Google Scholar 

  27. A. Mueller, G. Wang, R. A. Rapp, E. L. Courtright, and T. A. Kircher,Mater. Sci. Eng. 115A 199 (1992).

    Google Scholar 

  28. E. Fitzer,Austrian Patent 200,806, Nov. 25, 1958.

  29. E. Fitzer,German Patent 962,393, Apr. 18, 1957.

  30. E. Fitzer,U.S. Patent 2,902,392, Sept. 1, 1959.

  31. R. Bianco, M. A. Harper, and R. A. Rapp,JOM 43(11), 20 (1991).

    Google Scholar 

  32. T. A. Kircher and E. L. Courtright,Mater. Sci. Eng. A155, 67 (1992).

    Google Scholar 

  33. B. V. Cockeram, G. Wang, and R. A. Rapp,Werkst. Korros. 46, 207 (1995).

    Google Scholar 

  34. R. Watson, R. Mudway, and M. Sidoti,Ceram. Eng. Proc. 11, 1922 (1990).

    Google Scholar 

  35. J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben,Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp., Eden Prairie, MN, 1992).

    Google Scholar 

  36. R. S. Roth, J. P. Dennis and H. F. McMurdie, eds.,Phase Diagrams for Ceramists, Vol. VI (American Ceramic Society, Westerville, OH, 1987), p. 187.

    Google Scholar 

  37. B. Cockeram,Ph.D. dissertation, The Ohio State University 1994.

  38. A. Rahmel and P. J. Spencer,Oxid. Met. 35, 53 (1991).

    Google Scholar 

  39. JANAF Thermodynamical Tables, 3rd ed., 1985 supplement, fromJ. Phys. Chem. Ref. Data 14 (1985).

  40. L. B. Pankratz, J. M. Stuve, and N. A. Gokcen,U. S. Bur. Mines Bull. 677, 317 (1984).

    Google Scholar 

  41. P. Kofstad,High Temperature Corrosion (Elsevier, New York, 1988), 289, 416.

    Google Scholar 

  42. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann,Introduction to Ceramics, 2nd ed. (Wiley, New York, 1975).

    Google Scholar 

  43. H. Scholze,Glass Nature, Structure, and Properties (Springer-Verlag, New York, 1990), pp. 297, 340.

    Google Scholar 

  44. E. W. Sucov,J. Am. Ceram. Soc. 46, 14 (1963).

    Google Scholar 

  45. A. F. Wells,Structural Inorganic Chemistry, 5th ed. (Clarendon-Oxford Science, Oxford, 1986), pp. 531, 572, 617.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cockeram, B.V., Wang, G. & Rapp, R.A. Preventing the accelerated low-temperature oxidation of MoSi2 (pesting) by the application of superficial alkali-salt layers. Oxid Met 45, 77–108 (1996). https://doi.org/10.1007/BF01046821

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046821

Key Words

Navigation