Skip to main content
Log in

The possible scaling modes in the high-temperature oxidation of two-phase binary alloys. Part I: High oxidant pressures

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The main possible modes of the high-temperature corrosion of binary twophase alloys by a single oxidant under gas-phase pressures sufficient to corrode both alloy components are examined to highlight the differences in their behavior with respect to single-phase alloys. It is shown that in the absence of important diffusion processes of the metal components in the alloy the expected scale structures are significantly different from those typical of single-phase alloys. The effects due to the existence of different degrees of deviation from equilibrium as a result of kinetics hindrances for the formation of the most stable oxide and in the absence of alloy diffusion are then examined. It is also shown that when diffusion in the alloy becomes important the alloy may develop an outer single-phase layer depleted in the most-reactive component, which may lead to various possible scale structures. The conditions for the transition between the various oxidation modes as well as the effect of the various parameters of kinetics, thermodynamic and structural nature over the corrosion behavior of two-phase alloys are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Stringer, P. S. Corkish, and D. P. Whittle, inStress Effects on the Oxidation of Metals, J. V. Catchard, ed. (Met. Soc. AIME, New York, 1975), p. 75.

    Google Scholar 

  2. G. Wang, B. Gleeson, and D. L. Douglass,Oxid. Met. 35, 343 (1993).

    Google Scholar 

  3. F. Gesmundo, F. Viani, Y. Niu, and D. L. Douglass,Oxid. Met. 40, 373 (1993).

    Google Scholar 

  4. F. Gesmundo, Y. Niu, F. Viani, and D. L. Douglass,Oxid. Met. 39, 197 (1993).

    Google Scholar 

  5. F. Gesmundo, Y. Niu and F. Viani,Oxid. Met., accepted for publication.

  6. C. Wagner,J. Electrochem. Soc. 99, 369 (1952).

    Google Scholar 

  7. C. Wagner,Z. Elektrochem. 63, 772 (1959).

    Google Scholar 

  8. R. A. Rapp,Corrosion 21, 382 (1965).

    Google Scholar 

  9. F. Gesmundo and F. Viani,Oxid. Met. 25, 269 (1986).

    Google Scholar 

  10. P. Kofstad,High Temperature Corrosion (Elsevier Applied Science, London, 1988).

    Google Scholar 

  11. C. Wagner,J. Electrochenm. Soc. 103, 627 (1956).

    Google Scholar 

  12. A. Atkinson,Corros. Sci. 22, 87 (1982).

    Google Scholar 

  13. F. Gesmundo, P. Nanni, and D. P. Whittle,J. Electrochem. Soc. 127, 1773 (1980).

    Google Scholar 

  14. F. Gesmundoet al. (to appear).

  15. C. Wagner,Ber. Bunsenges. Phys. Chem. 70, 775 (1966).

    Google Scholar 

  16. N. Birks and G. H. Meier,Introduction to High Temperature Oxidation of Metals (Arnold, London, 1983).

    Google Scholar 

  17. J. P. Orchard and D. J. Young,J. Electrochem. Soc. 133, 1734 (1986).

    Google Scholar 

  18. A. T. Fromhold,Theory of Metal Oxidation (North-Holland, Amsterdam, 1976), Vol. I, Chap. 4.

    Google Scholar 

  19. R. A. Rapp,J. de Phys. IV, C9, Suppl. toJ. de Phys. III,3, 1 (1993).

    Google Scholar 

  20. B. S. Lee and R. A. Rapp,J. Electrochem. Soc. 131, 2998 (1984).

    Google Scholar 

  21. W. H. Cheung and D. J. Young,Oxid. Met. 36, 15 (1991).

    Google Scholar 

  22. F. Gesmundo, F. Viani, and D. J. Young,Oxid. Met. 38, 309 (1992).

    Google Scholar 

  23. B. Gleeson, D. L. Douglass, and F. Gesmundo,Oxid. Met. 31, 237 (1989).

    Google Scholar 

  24. M. F. Chen, D. L. Douglass, and F. Gesmundo,Oxid. Met. 31, 237 (1989).

    Google Scholar 

  25. G. Wang, R. Carter, and D. L. Douglass,Oxid. Met. 32, 273 (1989).

    Google Scholar 

  26. R. V. Carter, D. L. Douglass, and F. Gesmundo,Oxid. Met. 31, 341 (1988).

    Google Scholar 

  27. M. F. Chen, D. L. Douglass, and F. Gesmundo,Oxid. Met. 32, 185 (1989).

    Google Scholar 

  28. B. Gleeson, D. L. Douglass, and F. Gesmundo,Oxid. Met. 33, 425 (1990).

    Google Scholar 

  29. F. Gesmundo, P. Nanni, and F. Viani,Proceedings of the 10th International Symposium on the Reactivity of Solids, P. Barret and L. C. Dufour, eds. (Elsevier, Amsterdam, (1985), vol. 28A, p. 175.

    Google Scholar 

  30. T. Hodgkiess, G. C. Wood, D. P. Whittle and B. D. Bastow,Oxid. Met. 14, 263 (1980).

    Google Scholar 

  31. T. B. Massalski, J. L. Murry, L. H. Bennett, and H. Baker, eds.Binary Alloys Phase Diagrams (ASM, Metals Park, 1986).

    Google Scholar 

  32. G. R. Wallwork,Rep. Progr. Phys. 39, 401 (1976).

    Google Scholar 

  33. C. Wagner,Corros. Sci. 8, 889 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gesmundo, F., Viani, F. & Niu, Y. The possible scaling modes in the high-temperature oxidation of two-phase binary alloys. Part I: High oxidant pressures. Oxid Met 42, 409–429 (1994). https://doi.org/10.1007/BF01046758

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046758

Key Words

Navigation