Skip to main content
Log in

Sulfide-forming features during oxidation of predeformed nickel in SO2

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Loaded parts are exposed to hot corrosion to a greater extent than unloaded components. Pure nickel predeformed to various degrees by compression (up to 27%) has been oxidized in SO2 at 600°C for different periods (22 to 95 hr). It has been shown that transport properties of the scale, formed on the initial metal surface containing physical defects, depend on their surface density. A general behavior was established for the same exposure (>70 hr): the higher the preliminary strain, the greater the amount of Ni3S2 in the scale. Nickel predeformed 21% and 27%, oxidized in SO2 over 70 hr, formed scales consisting mainly of a single-phase Ni3S2 layer. An increase of the scale defectiveness accelerated attainment of heterogeneous equilibrium in a gas-scale system and intensified the formation of Ni3S2—the stable phase for the conditions used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kofstad, Surface Eng.: Surface Modif. Mater. Proc. NATO Adv. Study Inst., Les Ares, 1983, Dordrecht 1984, p. 384.

  2. D. L. Douglass,Corros. Sci. 8, 665 (1968).

    Google Scholar 

  3. J. Barbehon, A. Rahmel, and M. Schutze,Oxid. Met. 30, 85 (1988).

    Google Scholar 

  4. P. Kofstad, inHigh Temperature Materials Corrosive Coal Gasification Atmosphere (London, New York, 1984).

  5. K. P. Lillerud and P. Kofstad, inProceedings of the International Conference on High Temperature Corrosion, R. A. Rapp, ed. (San Diego, CA, 1981).

  6. A. Atkinson,Corros. Sci. 22, 347 (1982).

    Google Scholar 

  7. J. Gilewicz-Wolter,Oxid. Met. 29, 225 (1988).

    Google Scholar 

  8. A. Rahmel, M. Schorr, A. Velasco-Tellez, and A. Pelton,Oxid. Met. 27, 199 (1987).

    Google Scholar 

  9. M. G. Hocking and V. Vasantasree,Corros. Sci. 16, 279 (1976).

    Google Scholar 

  10. M. C. Pope, J. H. Woodhead, and N. Birks,Oxid. Met. 13, 3 (1979).

    Google Scholar 

  11. A. K. Roslik, Ph.D. thesis, Department of Solid State Physics, Urals Univ. at Yekaterinburg, Russia (1984).

  12. V. N. Konev and A. K. Roslik,Zaschita Metallov 21, 229 (1985).

    Google Scholar 

  13. C. Toumi and B. Gillot,Oxid. Met. 16, 221 (1981).

    Google Scholar 

  14. K. P. Lillerud, B. Haflan, and P. Kofstad,Oxid. Met. 21, 119 (1984).

    Google Scholar 

  15. P. Sarrazin and Skalli,Oxid. Met. 30, 107 (1988).

    Google Scholar 

  16. J. Gawel and A. Wyczesany,Corr. Sci. 28, 867 (1988).

    Google Scholar 

  17. M. R. Wootton and N. Birks,Corr. Sci. 12, 829 (1972).

    Google Scholar 

  18. A. Rahmel and J. A. Gonzales,Corr. Sci. 13, 433 (1973).

    Google Scholar 

  19. A. K. Roslik and A. M. Maltsev,Zaschita Metallov 25, 613 (1989).

    Google Scholar 

  20. V. Guerra and W. L. Worrell, Proc. 10th Int. Symp. Reactivity of Solids, Dijon, 1984, p. 96.

  21. B. Haflan and P. Kofstad,Corros. Sci. 23, 1333 (1983).

    Google Scholar 

  22. T. Wada and K. Ota,Denki Kagaku (Information Materials Energy Theory Life) 47, 486 (1979).

    Google Scholar 

  23. D. Caplan, M. J. Graham, and M. Cohen,J. Electrochem. Soc. 119, 1205 (1972).

    Google Scholar 

  24. A. S. Khanna and J. B. Gnanamoorthy,Oxid. Met. 23, 17 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roslik, A.K., Konev, V.N. & Maltsev, A.M. Sulfide-forming features during oxidation of predeformed nickel in SO2 . Oxid Met 43, 83–95 (1995). https://doi.org/10.1007/BF01046748

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046748

Key Words

Navigation